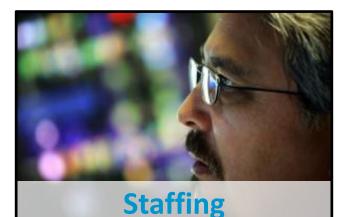
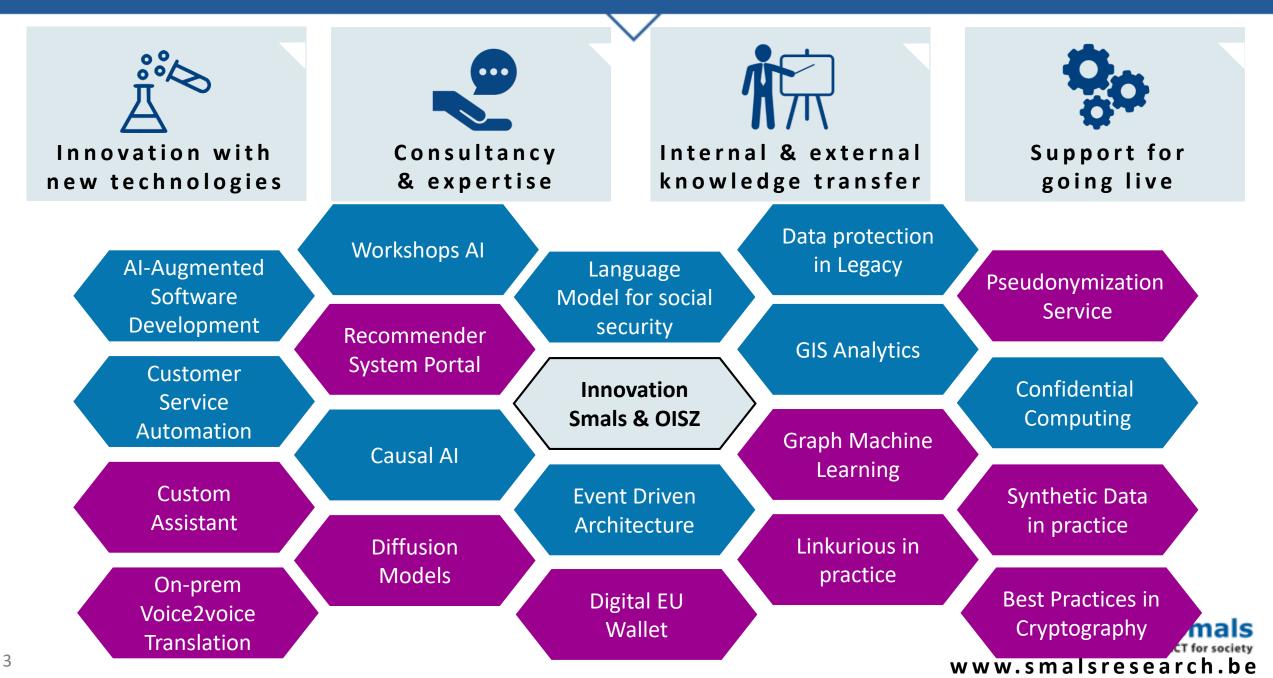
Quantum computers Vs. Modern cryptography

Kristof Verslype Cryptographer, PhD Smals Research

20/04/2023


Smals – ICT for Society

SUPPORT FOR E-GOVERNMENT



WWW.SMALS.BE

Smals Research 2023

Kristof Verslype Cryptographer, PhD Smals Research

kristof.verslype@smals.be

- www.smals.be www.smalsresearch.be www.cryptov.net
- @KristofVerslype
- in linkedin.com/in/verslype

KU Leuven

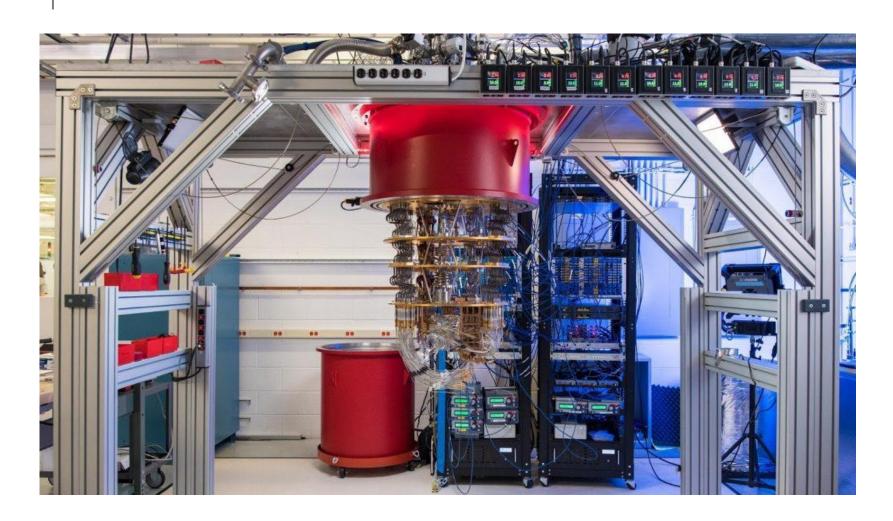
PhD. of Engineering Dept. CS, KU Leuven (2011) Applied cryptography

Smals

- Cryptography for privacy
- Advice on cryptography
- Blockchain

No background in quantum physics

Google claims quantum supremacy


23 oktober 2019

Article

Google

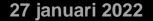
Quantum supremacy using a programmable superconducting processor

China claims quantum primacy

27 oktober 2021

Two Chinese teams claim to have reached primacy with quantum computers

by Bob Yirka , Phys.org



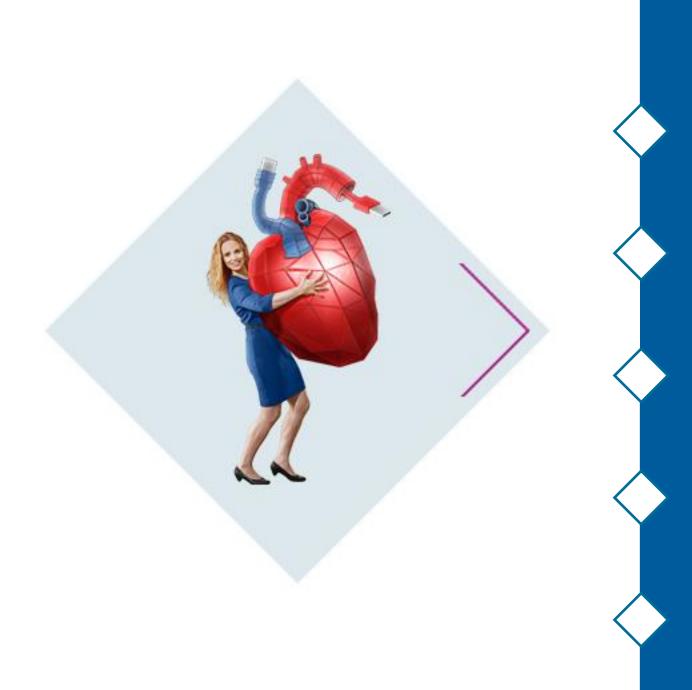
The Pan team's optical quantum computer uses a 144-mode interferometer to solve a Gaussian boson ...

Two teams in China are claiming that they have reached primacy with their individual quantum computers. Both have published the details of their work in the journal *Physical Review Letters*.

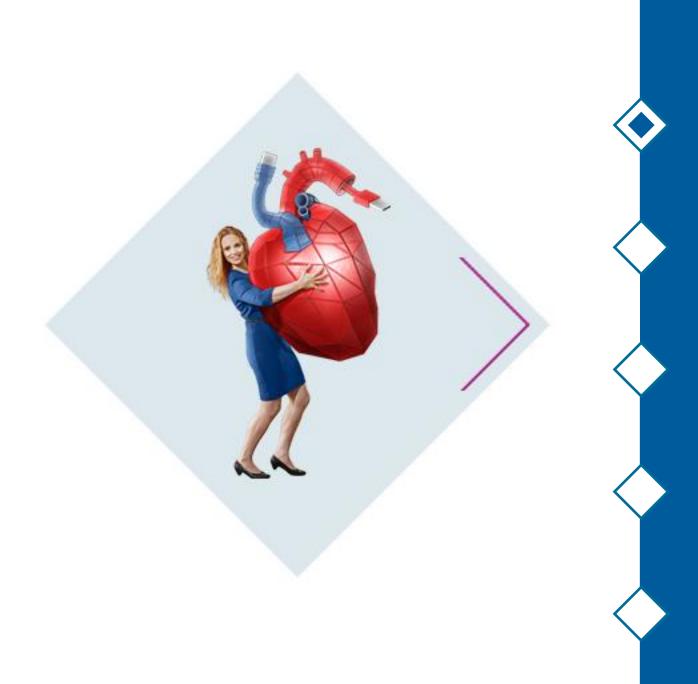
THE___BYTE.

QUANTUM APOCALYPSE

EXPERTS WARN OF "QUANTUM APOCALYPSE"


Experts are warning that quantum computers could eventually overpower conventional **encryption methods**, a potentially dangerous fate for humanity that they're evocatively dubbing the "quantum apocalypse,

Is the quantum army advancing at a rapid pace?


Quantum computer Vs. classical computer

Quantum computers in practice

Crypto-apocalypse now?

Quantum-resistant cryptography

Conclusions

Quantum computer Vs. classical computer

Quantum computers in practice

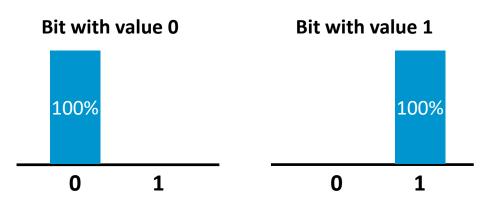
Crypto-apocalypse now?

Quantum-resistant cryptography

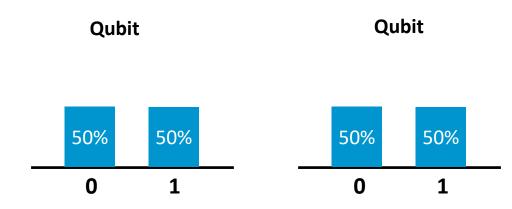
Conclusions

Moore's law

Moore's Law: The number of transistors on microchips doubles every two years Our World in Data Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers. Transistor count 50.000.000.000 AMD Epyc Rome 72-core Xeon Phi Centriq 2400 AWS Graviton2 IBM z13 Storage Controlle 10.000.000.000 5,000,000,000 Six-core Xeon Dual-core Itanium 1.000.000.000 (dual-core ARM64 "mobile SoC 9 MB cach 500.000.000 Itanium 2 Madison 6M 🗇 Pentium D Smith um 2 McKinley 🌰 100,000,000 entium 4 Cedar Mill AMD K8🔷 🔍 tium 4 Prescott Pentium 4 Northwood 50,000,000 Pentium 4 Willamette 🔷 🧇 motA Pentium III Tualatin Pentium II Mobile Dixo ARM Cortex-A9 AMD K7 💑 🚸 Pentium III Coppermine AMD K6-III 10,000,000 Pentium III Katmai Pentium II Deschutes 5,000.000 Pentium ! Pentiur Intel 80486 1,000,000 500.000 TI Explorer's 32-bit ARM700 O ARM 3 0 Motorola 68020 🐟 100.000 ARM 50,000 Intel 80186 ARM 6 Intel 8086 10,000 TMS 1000 Zilog Z80 1802 Sintel 8085 5.000 Motorola 6502 Technology • Intel 4004 1.000 2976 2978 2008 2016 2020 2012 2014 , 482, 488, 486, 486, 490, 491, 494, 496, 498, 200, 202, 204, 206 2970 2980


Veer is ushiph the price objection for tinted

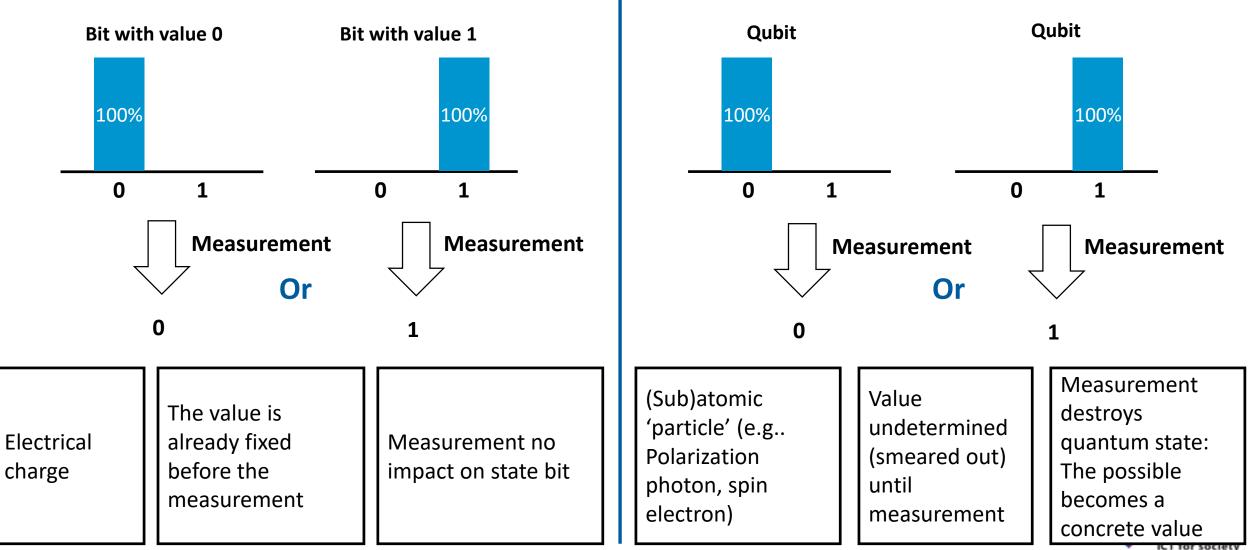
Extrapolation


- Number of transistors on a chip doubles every x (12, 18, 24, 30) months
- Forecast: Moore's law will end in 2025 (?)
- Collides with laws of Newtonian physics
- More powerful classical computers increasingly challenging
- Quantum computing?

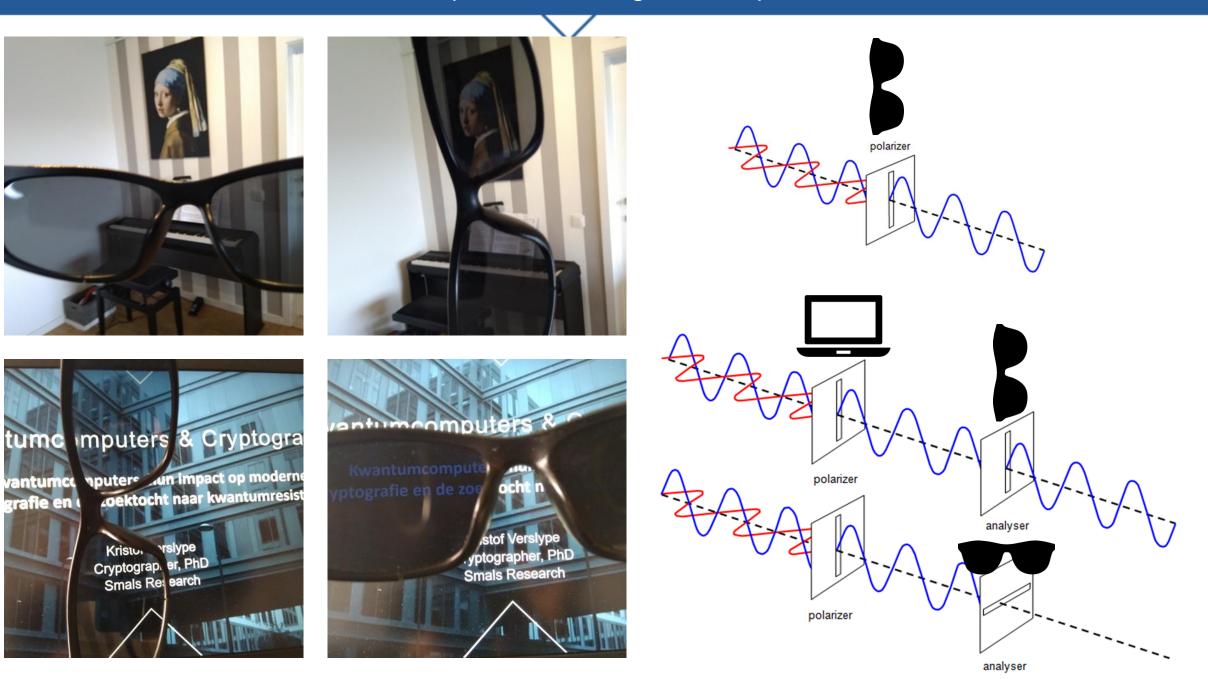
Superposition simplified

Classical computer

Quantum Computer

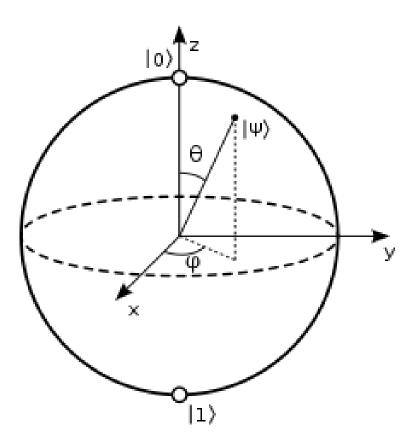


Measurement (Sub)atomic Value The value is destroys 'particle' (e.g.. undetermined Electrical already fixed Measurement no quantum state: Polarization (smeared out) before the The possible charge impact on state bit photon, spin until becomes a measurement electron) measurement concrete value


Superposition simplified

Classical computer

Quantum Computer



Polarisation of photons – Sun glasses experiment

Disclaimer: Reality is more complicated

Bloch Sphere

Dirac or Bra-ket notation of qubit

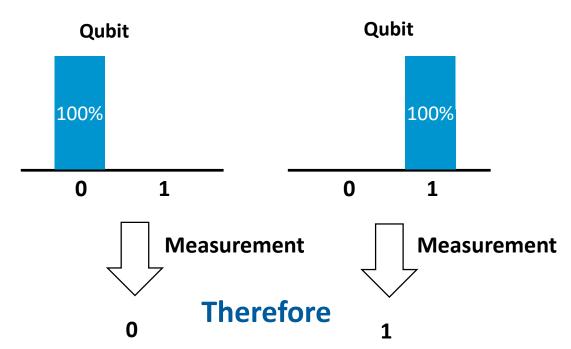
 $|\psi
angle = lpha |0
angle + eta |1
angle$

Entanglement

Correlation between measurements of related particles Measuring one qubit is sufficient to know the result of another

Qubit

Independent of distance between qubits (↔ Newtonian physics)

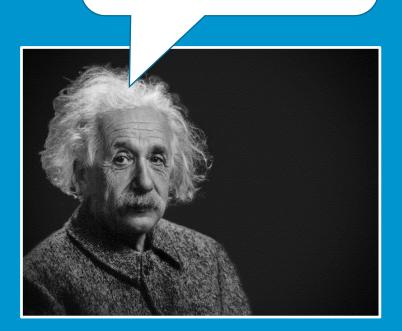

Qubit

Entanglement of more than 2 qubits is also possible

S

16

Entanglement


Correlation between
measurements of related
particlesMeasuring one qubit is
sufficient to know the
result of anotherIndependent of distance
between qubits
(\leftrightarrow Newtonian physics)Entanglement of more
than 2 qubits is also
possible

S

Entanglement

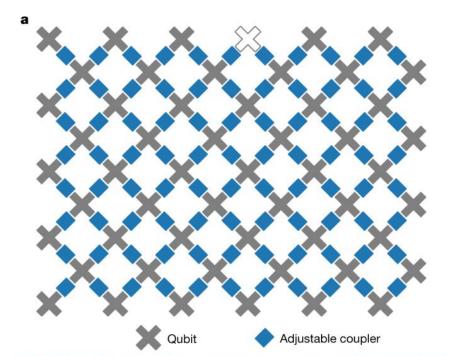
Superposition Value is undetermined until the time of measurement **Entanglement** Measurement of one qubit has impact on the outcome of measurement of another qubit

At the time of measurement of one qubit, the value of the other qubit is determined
→ Type of connection, independent of distance Spukhafte Fernwirkung! (Spooky action at a distance!)

Confirmed with high probability by experiments (e.g. Bell test experiments) No "hidden variables"

Principles quantum computers

Quantum state


Superposition

Value qubit undetermined until time of measurement

Entanglement

19

Measurement of one qubit has an impact on the outcome of measurement of another qubit

Quantum logic gates Pauli-X, Hadamard, SWAP, ...

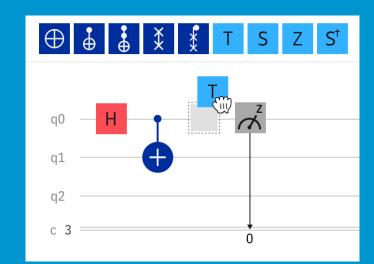
Quantum state

Quantum calculations

Building bricks for calculations: Logic gates

Classical computer Logic gates: AND, NOT, OR, XOR, ... **Quantum Computer** Quantum logic gates: Pauli-X, Hadamard, SWAP, ...

Quantum instruction sets


Convert algorithms to quantum processor instructions vb. Quil, OpenQASM

Quantum software development kits

Tools to create and manipulate vb. Qiskit, ProjectQ, Forest Often extensions existing programming languages

Quantum programming languages

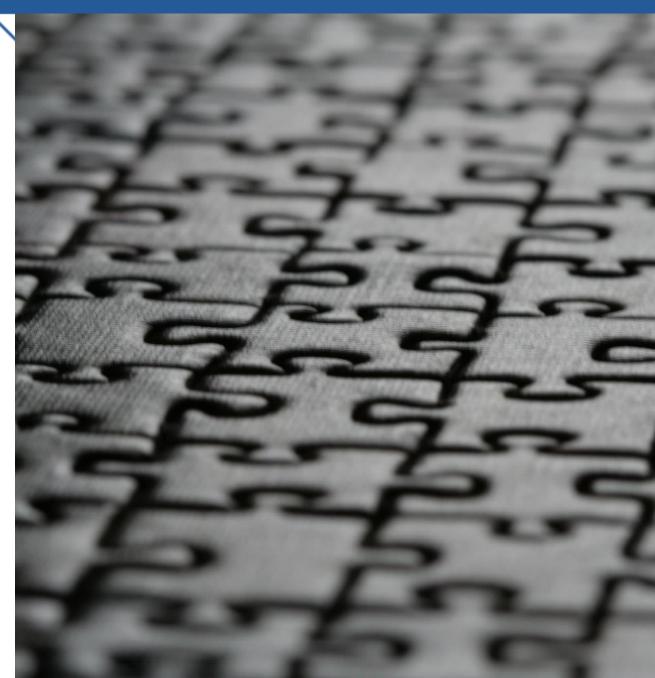
Quantum Computation Language (QCL), Q#, Q language

IBM Quantum Experience

IBM Hello quantum app

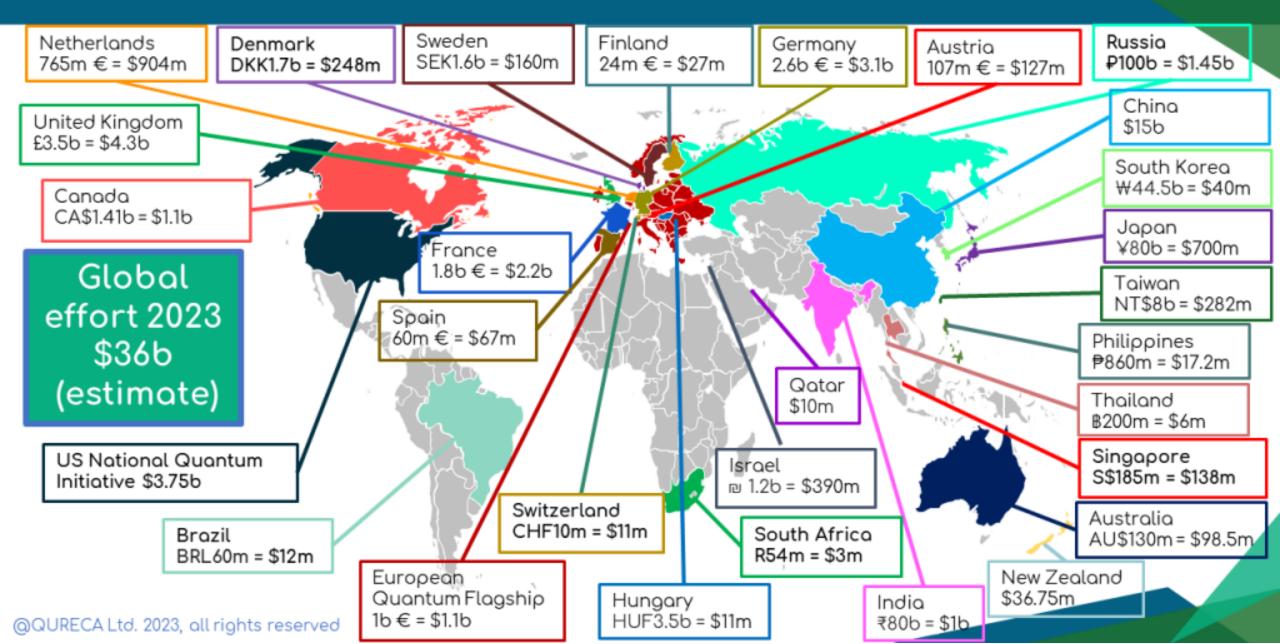
Theoretical power of universal quantum computers

Observation


When people don't understand something, they may attribute mythical properties to it

Misconception

"Quantum computers will be able to solve all problems that are difficult (or even impossible) for classical computers."


Depends on problem

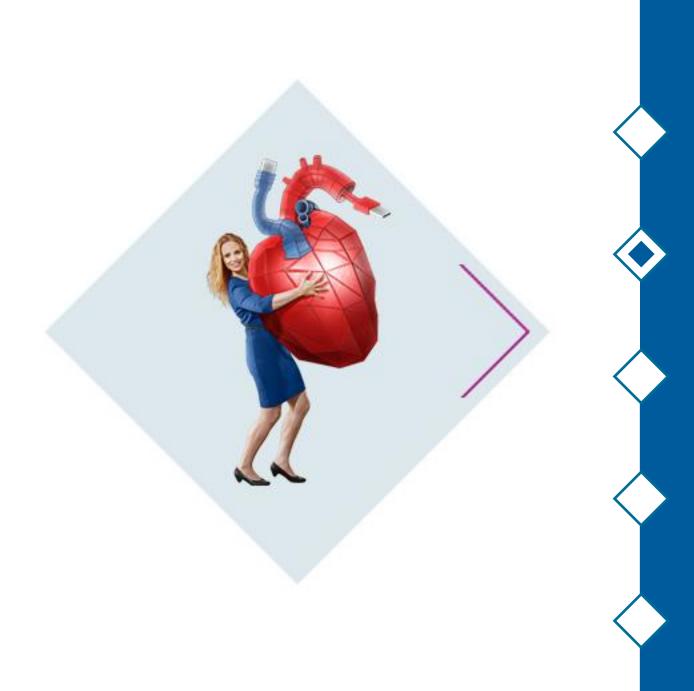
- Probably no significant added value
 E.g. Combinatorial search problems
 such as traveling salesman problem (NP-hard)
- Potentially added value
 E.g. Deep learning
- Clear added value
 E.g. Simulations natural processes
 E.g. Breaking modern cryptography

Quantum effort worldwide

Global quantum technology market is projected to reach \$42.4 billion by 2027

Quantum- Vs. Classical computer - Conclusion

Universal quantum computers


- Relying on unintuitive principles such as entanglement and superposition
- Have Qubits (sub)atomic particles / waves as the smallest storage and calculation unit
- Calculation is done in a fundamentally different way than with classical computers
- Are on paper powerful for a limited group of problems

"However, how many times faster [quantum computers will be] remains to be seen. Maybe 10 times, maybe 100 times. Some even talk about 100 million times faster. "

Koen Bertels Belgian professor at TU Delft Head Quantum Computer Architectures Lab TU Delft

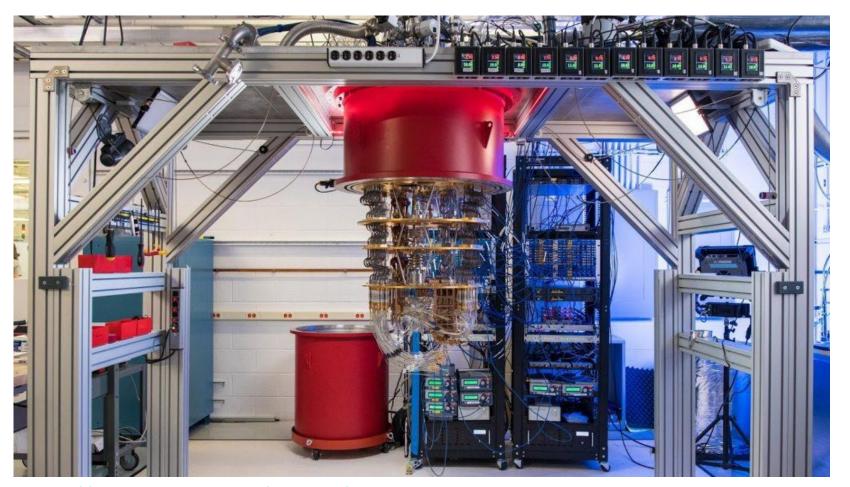
Quantum computer Vs. classical computer

Quantum computers in practice

Crypto-apocalypse now?

Quantum-resistant cryptography

Conclusions



Article

Google

Quantum supremacy using a programmable superconducting processor

Google claims quantum supremacy

23 oktober 2019

Google

Article

Quantum supremacy using a programmable superconducting processor

Quantum supremacy / Primacy

Quantum computers can solve a problem that is **practically impossible** for classical computers.

One, practically useless problem, is enough!

John Preskill, Theoretical physicist, 2012

Nevertheless, building a quantum computer with 53 qubits is a very strong achievement

The problem

- Randomly choose numbers according to specific distribution
- Tailored to quantum computers
- Not really useful

The claim

"Our Sycamore quantum computer does in 200 seconds what a classical computer would take 10,000 years to do."

The response

IBM

"Conservatively estimated, this can be done in 2.5 days with a conventional computer, and with a much higher accuracy"

Koen Bertels
 Head Quantum Computer Architectures Lab, TU Delft
 "Simply not true"

27 oktober 2021

PHYS ORG

Two Chinese teams claim to have reached primacy with quantum computers

by Bob Yirka , Phys.org

The Pan team's optical quantum computer uses a 144-mode interferometer to solve a Gaussian boson

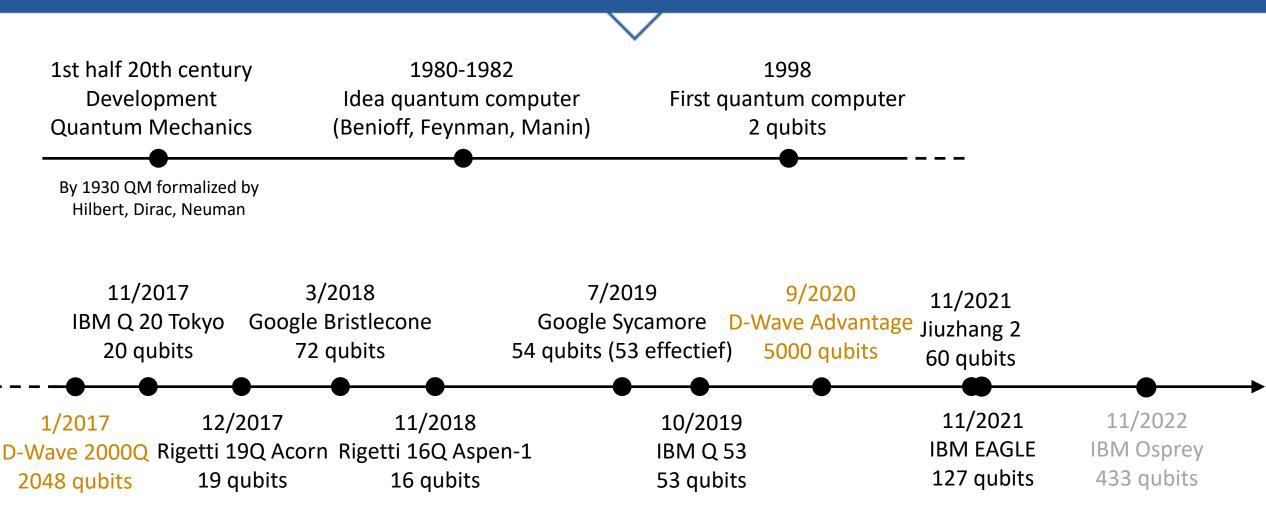
Two teams in China are claiming that they have reached primacy with their individual quantum computers. Both have published the details of their work in the journal *Physical Review Letters*.

The problem

- Simulation for calculating probabilities output circuit with photons (quantum effects)
- Tailored to quantum computers
- Not really useful

The claim

"10²³ x faster than a classical supercomputer"


The response

- Not contested
- This time, quantum supremacy / primacy reached

Another very strong performance! (I.e. calculations with 56 qubits)

Timeline quantum computers

Adiabatic quantum computers

Properties

- Requires less entanglement
- But more qubits
- Quantum annealing: combinatorial optimization problems (i.e. search space is discrete, s.a. traveling salesmen problem)
- ✤ Machines being sold (\$10M-\$15M)
- No quantum advantage yet

Quantum advantage


Quantum computers can solve a problem FASTER than classical computers. One, practically useless problem, is enough!

Development Roadmap

IBM Quantum

	2019 🤡	2020 🥑	2021 🥝	2022	2023	2024	2025	Beyond 2026
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model Developers					Prototype quantum software applications		Quantum software applications	
Developers							Machine learning Natural science Optimization	
Algorithm Developers		Quantum algorithm and ap	plication modules	\bigcirc	Quantum Serverless			
		Machine learning Natural science Optimization				Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel Developers	Circuits	\bigcirc	Qiskit Runtime					
				Dynamic circuits 👌	Threaded primitives Error suppression and mit		gation	Error correction
System Modularity	Falcon 🔗 27 qubits	Hummingbird 🔗 65 qubits	Eagle 🔗 127 qubits	Osprey 👌 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum
								communication
					Heron 133 qubits x p	Crossbill 408 qubits		

More qubits ≠ more computation power

→ IBM prefers the term *Quantum Volume*

→ Not easy to compare. Companies are not always transparent about inner workings & specs

Why is building a quantum computer so complex?

Challenge 1: Isolation

Interference

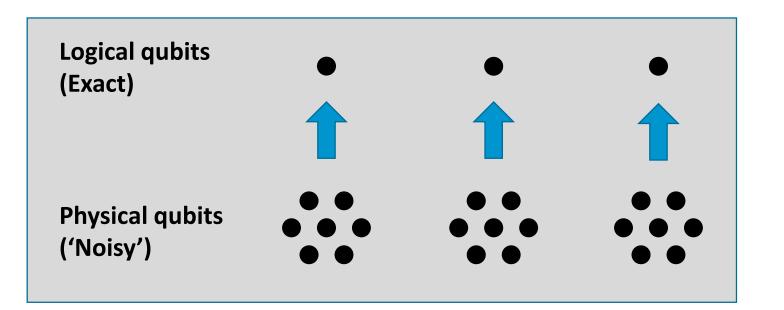
- Quantum state extremely sensitive for external interference
- Temperatures close to absolute zero (-273,15° C)
- Schielded from vibrations, light & magnetic radiation

Coherence time

- Challenge: keeping quantum state sufficiently long coherent
- ✤ Googles Sycamore: tenths or hundredths of a microsecond

Manipulation

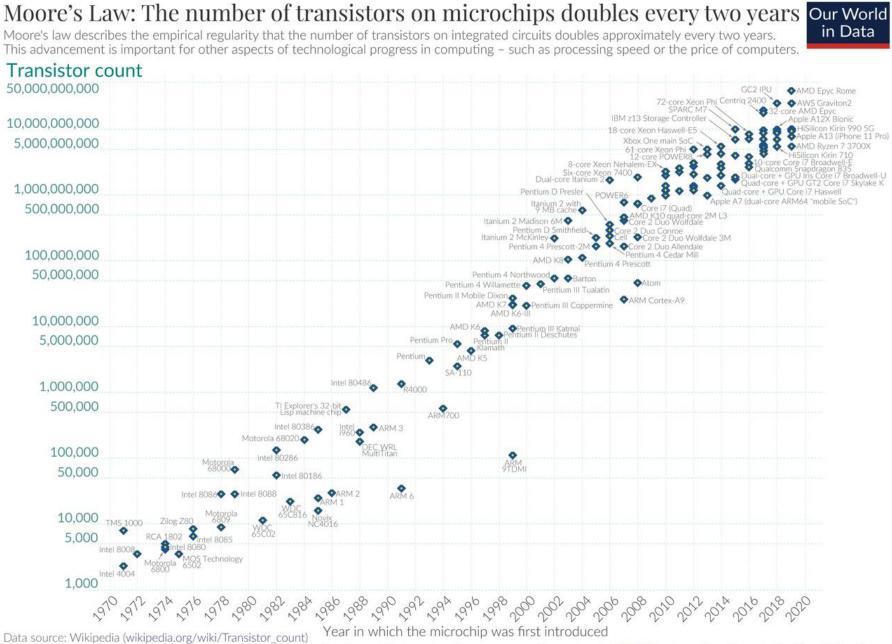
- Quantum logic gates sensitive to errors
- Reading (Measuring qubits)


Evolution

- Significant progress in recent years
- Errors most likely unavoidable

Errors may be unavoidable \rightarrow error correction necessary

Multiple physical qubits together form 1 logical qubit


Evolution

- Years '80 and '90: "impossible!"
- First experiments

Requirments

- Sufficiently long coherence time
- Estimates: 1000 to 100 000 physical qubits for a logical qubit
 - Noise physical qubits
 - Length of the circuit

Challenge 3: Scalability

Classical computer

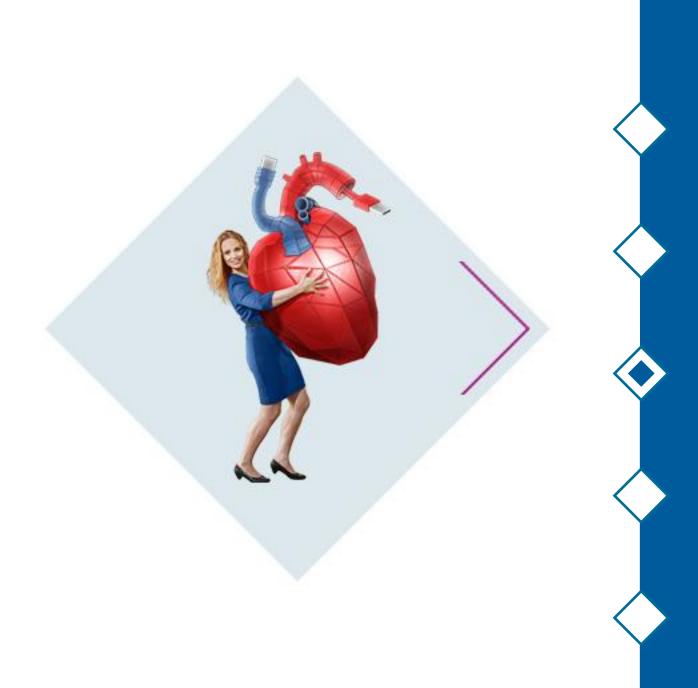
 Number of transistors on a chip doubles every x (12, 18, 24, 30) months


Quantum computer

- Requires exponential growth
- That can be maintained long enough
- In number of qubits AND in accuracy

35

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.


Why is building a quantum computer so complex?

Challenges are astronomical

36

Quantum computer Vs. classical computer

Quantum computers in practice

Crypto-apocalypse now?

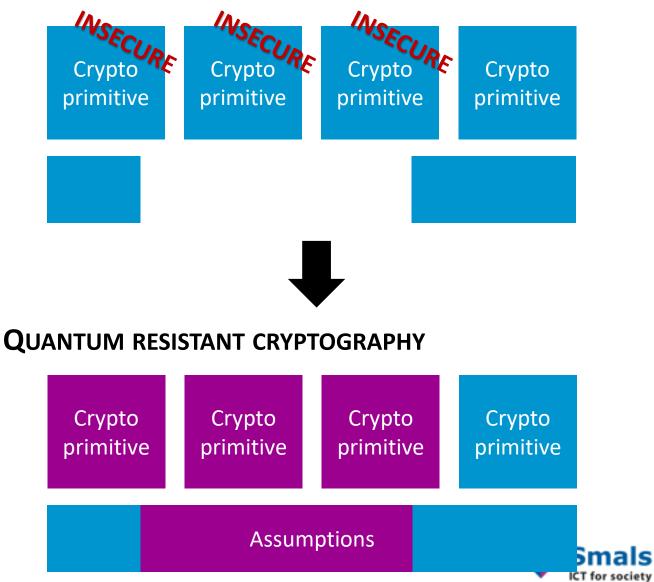
Quantum-resistant cryptography

Conclusions

Modern cryptography

\sim

- Since the advent of classical computers (1970s)
- Public algorithms, secret keys
- Security based on assumptions (from which security of algorithm is proven)
- Much more than confidential communications

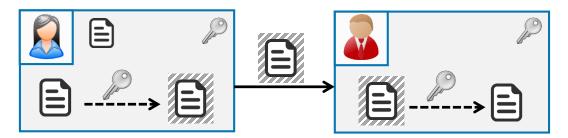

CRYPTO WORKHORSES

Crypto assumptions & Quantum computers

MODERN CRYPTOGRAPHY

Crypto-apocalypse now?

Impact quantum computers on modern cryptography?


Symmetric cryptography Cryptographic hash function

Public-key cryptography

Symmetric cryptography

Symmetric cipher

- Encryption and decryption with same secret key
- ► AES (KU Leuven)

Symmetric cryptography – Toy example

Breaking = finding secret key

Toy classical computer

- ► Key length = 6 bits 128 bits
- ▶ $8^2 = 2^6 = 64$ potential keys (= search space)
- Security = 6 bit
- Best attack is ± exhaustively testing each possible key
- On average, key found after 32 attempts

Toy quantum computer

- Promises quadratic speedup Size search space decreases from 64 to $\sqrt{64} = 8$
- Security decreased to 3 bit (because 8 = 2³)
- On average, key found after 4 attempts

Toy measure $128 \rightarrow 256$ bits

- Double key length: $6 \rightarrow 12$ bits
- Size of search space classical computer: $2^{12} = 64^2 = 4096$
- Size search space quantum computer: $\sqrt{4096} = 64$

Search space

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Symmetric cryptography – Grover's Algorithm (1996)

Grover's Algorithm on a quantum computer

Number of LOGICAL qubits required

- ► AES-128: 2953
- ► AES-192: 4449
- ► AES-256: 6681
- Entangled

Personal thought

First, a "quantum oracle" must be built. This step MAY negate the performance gain of Grover's algorithm

Zoekruimte

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

\checkmark

Bundesamt für Sicherheit in der Informationstechnik "At the present time, there is no evidence that symmetric cryptographic mechanisms are threatened in any significant way by quantum computers.

Generally, an adversary which has access to k universal quantum computers can perform a key recovery attack against a block cipher with a key length of n bits by executing the Grover algorithm in parallel on all available quantum computers within $\approx \pi 2^{\frac{n-4}{2}}/\sqrt{k}$ / k time units, where one unit of time corresponds to the time needed to execute the block cipher on a single quantum computer"

TR-02102-1: Cryptographic Mechanisms: Recommendations and Key Lengths January 2023

Powerful quantum computers pose no threat to symmetric cryptography

(As a precaution, take sufficiently long keys)

Cryptographic hash function

Integrity

Very commonly used (e.g. electronic signatures, files, blockchain)

Examples: SHA1, SHA2, SHA3

5e 50 6e 82 7f d5 50 ec 4e 08 8e e7 75 8f 34 b3 a6 8e 34 93 d5 89 98 52 97 48 f0 c6 c1 70 f3 3c

5f 3b fa 41 9c 63 be 2a 3a 09 ad bd 06 30 c5 1f 64 5e b0 3a ba fc d5 f2 ad 39 63 7a 30 6b 41 77

"Hello world!"

c0 53 5e 4b e2 b7 9f fd 93 29 13 05 43 6b f8 89 31 4e 4a 3f ae c0 5e cf fc bb 7d f3 1a d9 e5 1a

Fixed-length output

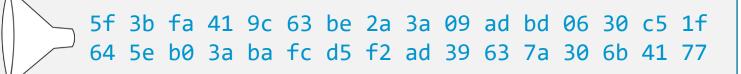
Pre-image resistance

Collision resistance

Second pre-image resistance

Cryptographic hash function

Integrity


Very commonly used (e.g. electronic signatures, files, blockchain)

Examples: SHA1, SHA2, SHA3

5e 50 6e 82 7f d5 50 ec 4e 08 8e e7 75 8f 34 b3 a6 8e 34 93 d5 89 98 52 97 48 f0 c6 c1 70 f3 3c

"Hell0 world!"

c3 5e 79 4b cf 52 34 c4 5a fc 19 c0 04 79 3d e7 d3 d2 4b 20 12 d0 3b f6 13 8b 23 c9 97 41 8a 50

Fixed-length output

Pre-image resistance

Collision resistance

Second pre-image resistance

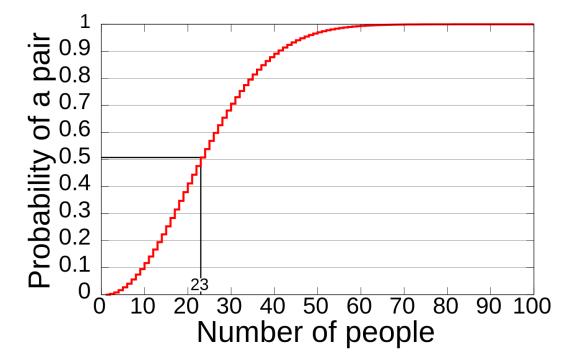
Collision attack

- ► Finding two inputs that result in the same output
- Successful attack against SHA1 in 2017

Classical computer

- ► 256 bits outputs results in 128 bits security P[collision] \approx 50% after $\sqrt{2^{256}}$ = 2¹²⁸ attempts
- Cfr. Birthday paradox

Quantum computer


- ► Grover's algorithm
- Security decreases from $\sqrt{2^{256}} = 2^{128}$ to $\sqrt[3]{2^{256}} = 2^{85} \approx 10^{26}$ (insecure)

Measure

- Output length x 1,5: 256 \rightarrow 384 bits ($\sqrt[3]{2^{384}}$ = 2¹²⁸)
- ► Manageable!

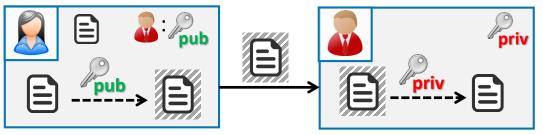
Birthday paradox

By Rajkiran, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10784025

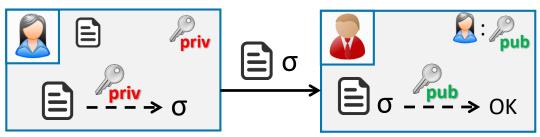
https://arxiv.org/pdf/1804.00200.pdf

Cryptographic hash function - Conclusions

Powerful quantum computers pose no threat to cryptographic hash functions


(Make sure the output is long enough)

Public-key cryptography


Public-key encryption

- Confidentiality
- Encryption with public key, decryption with private key

Digital signatures

- ► Integrity, data authenticity
- ► Vb. Belgian eID card

Ook authentication & establishing secure channels (TLS)

Most common systems based on RSA or elliptic curves

=

Prime number

Natural number only divisible by 1 and itself E.g. 2, 3, 5, 7, 11, 13, 17, 19, 23, ...

Factoring a number in prime factors

Unique for each number Example: $12 = 2^2 * 3$

RSA assumption

There is no efficient algorithm for factoring a number that is the product of two large prime numbers. In practice infeasible when sufficiently large primes are chosen.

> Powerful quantum computer could do this efficiently with the help of Shor's algorithm

Example RSA-250 (829 bits) published in 1991

214032465024074496126442307283933356300861 471514475501779775492088141802344714013664 334551909580467961099285187247091458768739 626192155736304745477052080511905649310668 769159001975940569345745223058932597669747 1681738069364894699871578494975937497937

641352894770715802787901901705773890848250 147429434472081168596320245323446302386235 98752668347708737661925585694639798853367 ×

333720275949781565562260106053551142279407 603447675546667845209870238417292100370802 57448673296881877565718986258036932062711

Was factored by classical computers in February 2020

Biggest RSA number factored by classical computer

RSA-250 (829 bits)

(in 2020, 2700 core-years)

Biggest RSA number factored With Shor's algorithm by quantum computer... (in 2012)

<u>Disclaimer</u>

- Quantum computers already factored larger, very specifically chosen numbers without Shor's algorithm.
- 52 Quantum factoring criticized for relying heavily on classical computers

RSA-2048 (2048 bits)

Public-key cryptography – Shor's Algorithm

Shor's Algorithm (1994)

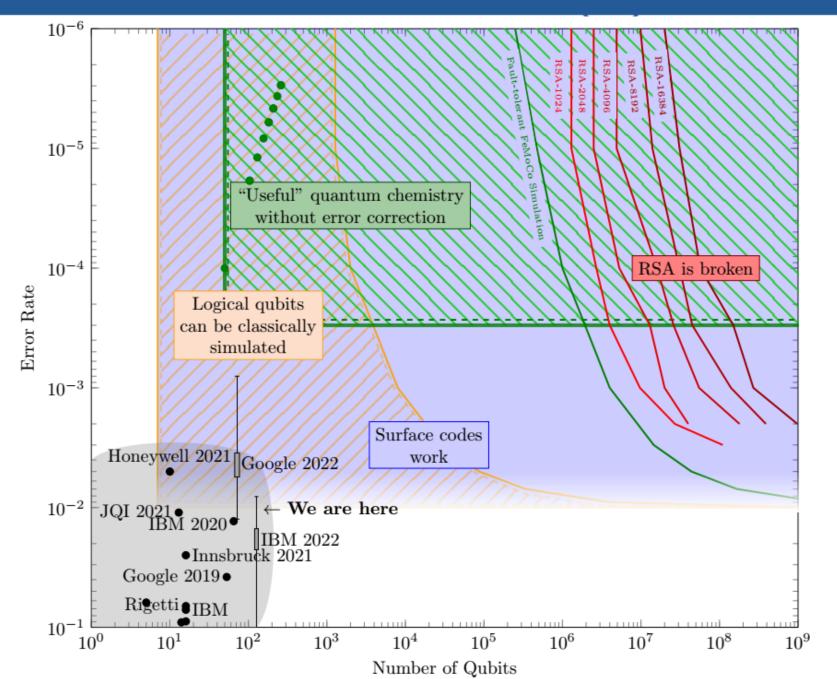
- Quantum algorithm to find the prime factors of an integer (RSA)
- Also applicable on cryptography based on elliptic curves (EC)

https://arxiv.org/abs/1905.09749 https://avs.scitation.org/doi/10.1116/5.0073075

RSA

Algoritme	# bits security	# logical qubits	# physical qubits
RSA- 1024	80	± 2048	
RSA- 2048	112	± 4096	20 million (8 hours, 2019)
RSA- 3072	128	± 6144	
RSA- 7680	192	± 15360	
RSA- 15360	256	± 30720	
	x2	Î	

Elliptic curves


Algoritme	# bits security	# logical qubits	# physical qubits
P- 256 = secp256r1	128	± 1536	13 million (24 hours, 2022)
P- 384 = secp384r1	192	± 2304	
P- 521 = secp521r1	256	± 3126	
	— x6 ——	Ť	

Powerful quantum computers with tens of millions of physical qubits threaten public key cryptography

(But we're not there yet)

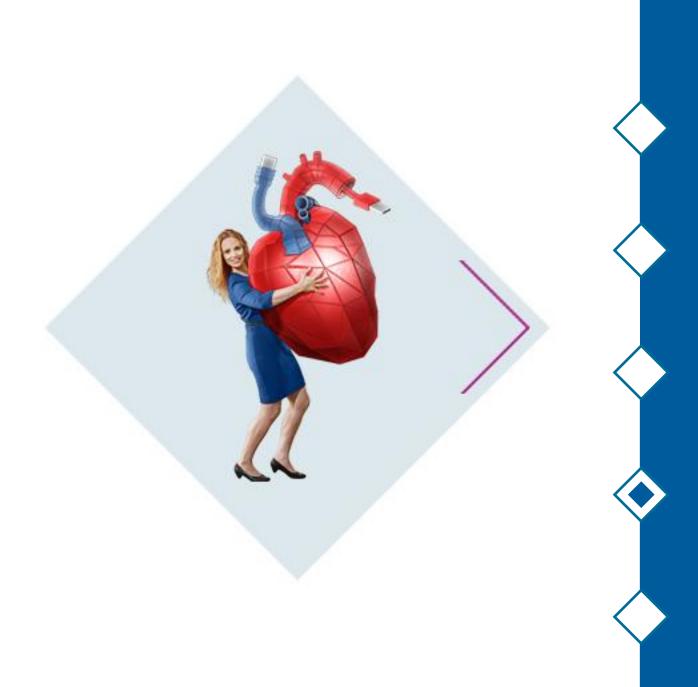
Overview

55

Surface codes = error correction

"Longer algorithm's like Shor's algorithm (to break RSA) likely require more than 1000 physical qubits per logical qubit."

"We need Moore's-law type scaling for quantum computers to ever be useful"


By Samuel Jaques, University of Oxford, 2022 https://sam-jaques.appspot.com/quantum_landscape_2022

Impact of quantum computers on modern cryptography

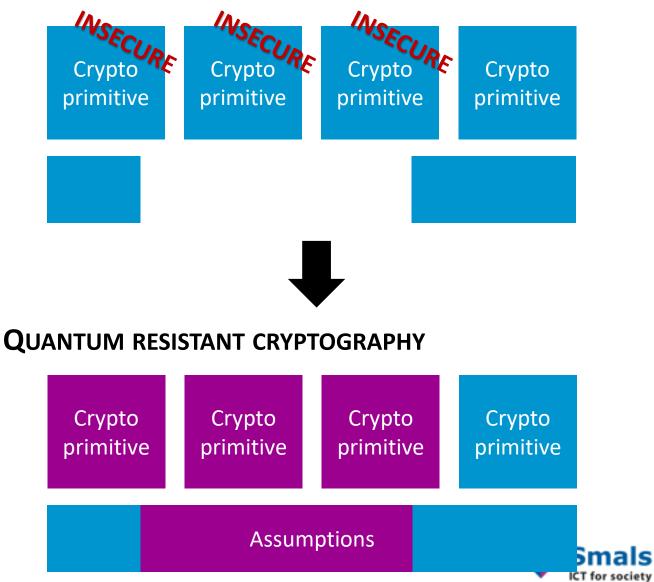
	Symmetric cryptography	Cryptographic hash function	Public-key cryptography		
Quantum Threat	Grover's algorithm Grover's algorithm		Shor's algorithm		
Number of qubits	Several thousand logical = several million physical qubits				
What if?	Key length x 2	Output length x 1,5	Quantum resistant alternatives		
Impact efficiency	Requires 25% more time(*)	Nihil (*)	Mixed (see later)		

(*) Indicative. Result testing performed on Thinkpad laptop with core i5 processor

Quantum computer Vs. classical computer

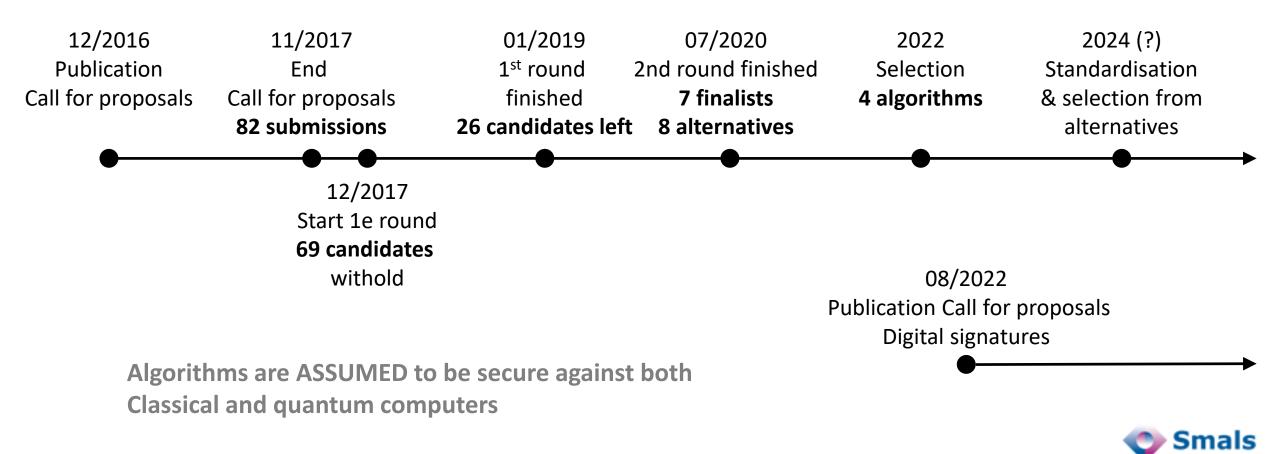
Quantum computers in practice

Crypto-apocalypse now?


Quantum-resistant cryptography

Conclusies

Crypto assumptions & Quantum computers


MODERN CRYPTOGRAPHY

Two parts

- Public-key Encryption and Key-establishment Algorithms
- Digital Signature Algorithms

KU Leuven submission (SABER and LUOV) didn't make it

Public-key Encryption and Key-establishment Algorithms

Chosen algorithm: Kyber

- Kyber-512 ≈ 128 bit security
- Kyber-768 ≈ 192 bit security
- Kyber-1024 ≈ 256 bit security

	Quantum Resistant		Data transmission (in bytes)	Client-side computation (higher is better)	Server-side computation (higher is better)
RSA-2048	Nee	256	512	29 ops / sec	150 000 ops / sec
Curve25519	Nee	32	64	15 000 ops / sec	15 000 ops / sec
Kyber-512	Ja	800	1568	57 000 ops / sec	80 000 ops / sec

Alternative candidates

- BIKE, Classic McEliece and HQC
- Goal: select at least a 2nd KEM standard by 2028
- Alternative in case weaknesses against Kyber found
- Fourth alternative candidate, SIKE, has been broken (summer 2022)

https://pq-crystals.org/kyber/

https://blog.cloudflare.com/nist-post-quantum-surprise/

60 https://www.wired.com/story/new-attack-sike-post-quantum-computing-encryption-algorithm/

DATA PROTECTION

Al Helps Crack NIST-Recommended Post-Quantum Encryption Algorithm

The CRYSTALS-Kyber public-key encryption and key encapsulation mechanism recommended by NIST for post-quantum cryptography has been broken using AI combined with side channel attacks.

61 https://www.securityweek.com/ai-helps-crack-a-nist-recommended-post-quantum-encryption-algorithm/

Correction

Not the algorithm was cracked, but an implementation of it

Digital Signature Algorithms

	Quantum Resisteat	Size public key (in bytes)	Size signature (in bytes)	CPU time Signing (lower is better)	CPU time Verification (lower is better)
Ed25519	Nee	32	64	1 (baseline)	1 (baseline)
RSA-2048	Nee	256	256	70	0,3
Dilitium2	Ja	1 312	2 420	4,8	0,5
Falcon512 ¹	Ja	897	666	8	0,5
SPHINCS+128s	Ja	32	7 856	8 000	2,8
SPHINCS+128f	Ja	32	17 088	550	7

[1] Falcon Has a high implementation complexity => Higher risk of vulnerabilities In particular floating point operations in constant time

Lack of an efficient and generically usable quantum-resistant signature scheme prompted NIST to initiate a new standardization procedure.

Also: Stateful hash-based signatures (XMSS, LMS)

2021

- "Cryptographically Relevant Quantum Computer" (CRQC)
- ✤ NSA does not know when or even if a [CRQC] will exist
- The cryptographic systems that NSA produces, certifies, and supports often have very long lifecycles. NSA has to produce requirements today for systems that will be used for many decades in the future
- New cryptography can take 20 years or more to be fully deployed to all National Security Systems

2022

- Given foreign pursuits in quantum computing, now is the time to plan, prepare and budget for a transition to QR algorithms to assure sustained protection of [classified and critical information] in the event a CRQC becomes an achievable reality.
- We want people to take note of these requirements to plan and budget for the expected transition, but we don't want to get ahead of the standards process

"Unfortunately, the growth of elliptic curve use has bumped up against the fact of continued progress in the research on quantum computing, which has made it clear that elliptic curve cryptography is not the long term solution many once hoped it would be."

IAD, defensieve tak NSA, 2015

United States

Law signed by Biden on 21 December 2022 Quantum Computing Cybersecurity Preparedness Act

- Cryptography essential for national security and the functioning of the economy
- Potential risks posed by "harvest now, decrypt later" attacks
- Prioritize the post-quantum cryptography migration within a year after the NIST issues post-quantum cryptography standards
- Within six months, federal agencies must develop a strategy for migrating to post-quantum cryptography

Quantum resistant cryptography – BSI

\checkmark

65

Bundesamt für Sicherheit in der Informationstechnik

"The quantum computer resistant algorithms that are currently beina standardized are not yet analyzed as well as the "classical" algorithms (RSA and ECC). This is especially true with regard to weaknesses that become largely apparent in applications, such as typical implementation errors, possible side-channel attacks, etc. Therefore, the BSI does not recommend using post-quantum cryptography alone, but only "hybrid" if possible, i.e. in combination with classical algorithms."

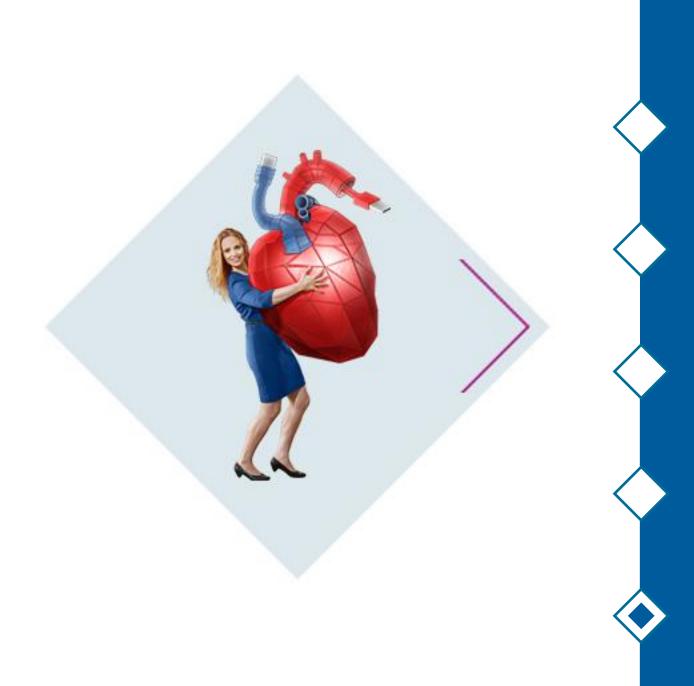
> Migration to Post Quantum Cryptography May 2021

"Corresponding standards are expected in the coming years. Introducing current, nonstandardised mechanisms in new cryptographic systems is therefore always associated with the risk of creating systems that are *incompatible with standards* that are foreseeable for the near future. However, in applications that are intended to *quarantee the confidentiality of information* with a high value and a long-term need for protection, these problems weigh less heavily in the BSI's view than the possibility of future attacks."

> TR-02102-1: Cryptographic Mechanisms: Recommendations and Key Lengths January 2023

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html

Quantum resistant cryptography – Conclusion


Migration

- NIST standardisation procedure ongoing
- Then consider migration (or wait a bit?)
- Urgency depends on risk assessment

Prepare with crypto agility

- Overview: Which cryptography and keys where and why?
- Build systems sufficiently flexible to minimize friction when replacing crypto keys & algorithms
- Foresee migration procedures

Quantum computer Vs. classical computer

Quantum computers in practice

Crypto-apocalypse now?

Quantum-resistant cryptography

Conclusion

Quantum computers are based on principles from quantum physics (entanglement & superposition)

Building quantum computers extremely complex (Isolation, error correction, scalability)

Longer symmetric keys and hash output Several million physical qubits required to crack public key cryptography → Alternatives needed

The NIST standardization process is ongoing

Quantum computer Vs. classical computer

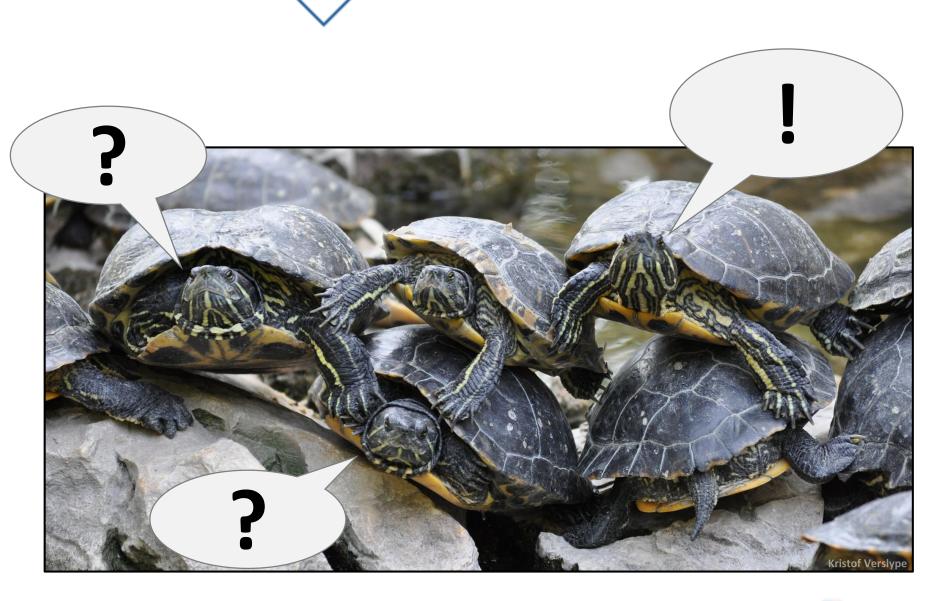
Quantum computers in practice

Crypto-apocalypse now?

Quantum-resistant cryptography

Questions / Discussion

Kristof Verslype Cryptographer, PhD Smals Research


kristof.verslype@smals.be

www.smals.be www.smalsresearch.be www.cryptov.net

Referenties

- F. ARUTE, K. ARYA, [...] J. MARTINIS. *Quantum supremacy using a programmable superconducting processor*. Nature, 23 October 2019 https://www.nature.com/articles/s41586-019-1666-5
- Post-Quantum Cryptography Project overview. NIST. https://csrc.nist.gov/projects/post-quantum-cryptography
- Commercial National Security Algorithm Suite. NSA. https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
- Post-Quantum Cybersecurity Resources. NSA.
 https://www.nsa.gov/what-we-do/cybersecurity/post-quantum-cybersecurity-resources/
- S. DAS SARMA. *Quantum computing has a hype problem. MIT Technology Review*. 22 Maart 2022 https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem/
- M. GRASS, B. LANGENBERG, M. ROETTELER, R. STEINWANDT. Applying Grover's algorithm to AES: quantum resource estimates. Post-Quantum Cryptography, Springer, Cham, 2016. https://arxiv.org/pdf/1512.04965.pdf
- C. GIDNEY, M. EKERA. *How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits*. arXiv preprint arXiv:1905.09749, 2019. https://arxiv.org/abs/1905.09749
- M. DYAKONOV. *The Case Against Quantum Computing*. EEE Spectrum 56.3, 15 November 2018. <u>https://spectrum.ieee.org/computing/hardware/the-case-against-quantum-computing</u>
- H. HELSMOORTEL, W. DE MAESENEER. Vlaamse topwetenschappers blikken vooruit: Staat er in 2030 een kwantumcomputer in onze woonkamer? VRT Nieuws, 15 January 2020,

https://www.vrt.be/vrtnws/nl/2019/12/24/vlaamse-topwetenschappers-blikken-vooruit-naar-2030-kwantumcomp/

- D. MASLOV, J. GAMBETTA. On "Quantum Supremacy". IBM Research Blog, 21 October 2019. https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
- V. MAVROEIDIS, K. VISHI, M. Zych, A Jøsang. The impact of quantum computing on present cryptography. arXiv preprint arXiv:1804.00200, 2018 Mar 31.

https://arxiv.org/pdf/1804.00200.pdf

- J. Preskill. Quantum computing in the NISQ era and beyond. Quantum. 2018 Aug 6;2:79.
- 71 <u>https://arxiv.org/abs/1801.00862</u>

\checkmark

- IBM. Q System One quantum. <u>https://www.ibm.com/quantum-computing/systems/</u>
- Andrew Magill. JTAG board 1 <u>https://flickr.com/photos/amagill/2877921712/</u>
- Max Roser Transistor count. <u>https://ourworldindata.org/uploads/2019/05/Transistor-</u> <u>Count-over-time-to-2018.png</u>
- Alex Does Physics. Polarization <u>http://alexdoesphysics.blogspot.com/2018/11/mathemati</u> <u>cal-description-of-polarization.html</u>
- Orren Jack Turner. Einstein in 1947
 <u>https://en.wikipedia.org/wiki/Albert_Einstein#/media/File</u>
 <u>:Albert_Einstein_Head.jpg</u>
- INTVGene. Puzzle. https://www.flickr.com/photos/intvgene/370973576/
- Nature. Layout Sycamore processor. https://www.nature.com/articles/s41586-019-1666-5
- D-Wave Systems. D-Wave 2000Q Quantum Computer. <u>https://www.dwavesys.com/press-releases/d-</u> <u>wave%C2%A0announces%C2%A0d-wave-2000q-quantum-</u> computer-and-first-system-order

- Quantum computing <u>https://www.roche.com/quantum-computing.htm</u>
- Pixabay. Jug Thermos Hot Cold Drink Coffee <u>https://pixabay.com/photos/jug-thermos-hot-cold-drink-</u> <u>coffee-3638398</u>
- Marcus Gripe, Garv... (writing) <u>https://flickr.com/photos/neoeinstein/4503776883</u>
- Willian Clifford. This is as close as you get. (fingerprint) <u>https://www.flickr.com/photos/williac/2503890509/</u>
- Birthday paradox <u>https://commons.wikimedia.org/w/index.php?curid=1078</u> 4025
- Natascha. Keys. https://www.flickr.com/photos/tasj/5207744064
- Kristof Verslype. Threatening clouds above Lake Titicaca, Peru.

https://www.flickr.com/photos/verslype/23928588621

72