# Advanced cryptography for privacy protection Cases from the government field

Kristof Verslype PhD, Smals Research



20 dec. 2019

# Smals – ICT for Society



# SUPPORT FOR E-GOVERNMENT













# WWW.SMALS.BE



# Smals Research



www.smalsresearch.be

Modern cryptography



4

# Advanced cryptography



Potential within government context



# Advanced cryptography



#### Potential within government context





# Oblivious transfer

## **Oblivious transfer – Problem statement**



#### **Scenario**

Investigation by Ministery of Justice of into specific citizen Ministery needs information provided by multiple sources



**Proportionality Privacy subject towards source Confidentiality of investigation** 



# Oblivious transfer – Problem statement



#### **Scenario**

Investigation by Ministery of Justice against a specific citizen Ministery needs information provided by multiple sources



ProportionalityImage: Confidentiality of investigation



## Oblivious transfer - Tension

Privacy of citizen & confidentiality investigation towards sources



Proportional processing of personal data by ministery of justice



# **Oblivious transfer - Concept**





# In reality

- Millions of records, but grouped. OT applied on one group
- Legal obligation to remove irrelevant ciphertexts asap

# Oblivious transfer – Implementation & performance



# Computational load at sender

#### 256 bit security, standard laptop

|             | 1 out of 1000 records        |                                 |                                     | 1 out of 10 000 records      |                                 |                                     | 1 out of 25 000 records      |                                 |                                     |
|-------------|------------------------------|---------------------------------|-------------------------------------|------------------------------|---------------------------------|-------------------------------------|------------------------------|---------------------------------|-------------------------------------|
|             | Receiver<br>init<br>O(log n) | Sender<br>encrypt<br>O(log n*s) | Receiver<br>decrypt<br>O(s + log n) | Receiver<br>init<br>O(log n) | Sender<br>encrypt<br>O(log n*s) | Receiver<br>decrypt<br>O(s + log n) | Receiver<br>init<br>O(log n) | Sender<br>encrypt<br>O(log n*s) | Receiver<br>decrypt<br>O(s + log n) |
| 20,7KB/rec. | 213ms                        | 925ms                           | 30ms                                | 299ms                        | 4896ms                          | 27ms                                | 289ms                        | 11544ms                         | 37ms                                |
| 103,4KB/rec | 214ms                        | 2604ms                          | 33ms                                | 270ms                        | 22 146ms                        | 36ms                                | 282ms                        | 54586ms                         | 40ms                                |

#### Setup

Data in-memory / Lenovo Thinkpad L570, Windows 10, Intel Core i5-6300 CPU @ 2,40Ghz, 16GB, P-521 curve, no multithreading.

Only of crypto calculations, not of storage I/O or communication Average of 10 runs is taken

#### **Smals Research Java implementation**

- M Byali, A Patra, D Ravi, P Sarkar. *Fast and Universally-Composable Oblivious Transfer and Commitment Scheme with Adaptive Security*. IACR Cryptology ePrint Archive, **2017**
- C. Peikert, V. Vaikuntanathan, B. Waters. A Framework for Efficient and Composable Oblivious Transfer. CRYPTO 2008: Advances in Cryptology – CRYPTO 2008 pp 554-571

# Oblivious transfer



# Concept

- Active research domain with advanced protocols
- High efficiency
- Own Java implementation

# Applicability

- Answer to a concrete need
- New technology for our sector
- Will take while to get it in production





Concept by Smals Research

# **Fictional example**

#### **Citizen selection**

- All persons self-employed as secondary activity
- With a wage above € 50 000 / year as employee

#### **Required data**

- Specific medical data &
- Data about insurance as independent

#### **Cooperation by multiple organisations required**







# Joining and pseudonymizing personal data from multiple sources for research purposes

# Joining personal data – Current practice







Deliberation nb. 17/071 from 19/9/17 (left)

Deliberation nb. 19/062 from 2/4/19 (right)

- ► Complex flow
- Bespoke
- ► Slow
- Security risks
- ► Data leakage

#### **Context**

Joining and pseudonymizing personal data from multiple sources for research purposes

#### **Scenario**

#### **Citizen selection**

- All persons self-employed as secondary activity
- With a wage above € 50 000 / year as employee

#### **Required data**

- Specific medical data
- Data about insurance as independent

#### <u>Issues</u>

- Data leakage towards senders and/or TTP
- Extra intermediaries increase complexity

# **Potential traditional approach**





#### <u>Idea</u>

- Each sender sends all potentially relevant data to the receiver, but encrypted and pseudonymized
- Receiver can decrypt iff something received about the same citizen from each sender



Receiver learns only required pseudonymized **personal** data.

Minimal leakage of statistical data leaks to the receiver in example:

- #citizens with wage > €
  50 000
- #independents as secondary activity



#### TTP (Trusted third party)

- Removes asap irrelevant ciphertexts
- Potentially does additional operations (e.g. checks)
- Access control w.r.t. researcher
- ► 'Trust' very limited











![](_page_21_Picture_2.jpeg)

### Current practice Vs. Oblivious join

![](_page_22_Figure_1.jpeg)

### Current practice Vs. Oblivious join

![](_page_23_Figure_1.jpeg)

#### **Status**

First library for test and demo purposes with core functionality

- Efficiency for 256 bit security: "A few hours" [1]
- Technical description in progress
- Collaboration with legal and security services

# Joining & pseudonymizing personal data

- In a standardized way
- Without data leakage

![](_page_24_Figure_9.jpeg)

[1] Preliminary tests on Ubuntu18.04, Intel Core i5-8250 CPU @1,60Ghz, 4 cores, 6GB

![](_page_24_Picture_11.jpeg)

# Advanced cryptography

![](_page_25_Figure_1.jpeg)

Potential within government context

![](_page_25_Picture_3.jpeg)

# Advanced cryptography - Conclusions

Kristof Verslype Cryptographer, PhD Smals Research

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

#### www.smals.be www.smalsresearch.be www.cryptov.net (personal)

Smals research sees opportunities within government context

#### Complex or hard to attain goals in a traditional way?

Functional requirements

![](_page_26_Picture_8.jpeg)

Security & privacy (GDPR) requirements

**Ongoing research** 

![](_page_26_Picture_11.jpeg)