"Fake it till you make it" :

an introduction to synthetic data

Joachim Ganseman - Smals Research

DEVOXX - 12/10/2022

Smals – ICT for Society

SUPPORT FOR E-GOVERNMENT

Staffing

WWW.SMALS.BE

Smals Research 2022

www.smalsresearch.be

Introduction

 "A developer upgraded to Ubuntu 22, which broke his computer setup, one week before an important presentation" [DALL-E 2]

Synthetic data

Image © <u>Haoran Li</u>, <u>Li Xiong</u>, <u>Lifan Zhang</u>, and <u>Xiaoqian Jiang</u>, "DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing"

 Create a fictitious dataset that mimics an actual dataset by learning its structure and generating plausible datapoints

Access to data is not always as simple as "sign this NDA and it's fine"

Source: "Towards the European Health Data Space", Markus Kalliola, TEHDAS

\checkmark

- Regulatory requirements for re-use of sensitive data, not limited to:
 - "Sufficient / adequate" technical and organizational measures
 - Explicit permission from data subjects
 - Anonymization / aggregation
 - Obligations to delete data
 - Writing impact assessments, keeping registries, ...
- Real data can be
 - Expensive to collect
 - Unbalanced
 - Incomplete
- \rightarrow Synthetic data can avoid more than one headache

- "<u>SyntheticMass</u> is a model of synthetic residents of the state of Massachusetts, with [statistically accurate] artificial health records for the fictional residents."
- Tests most aspects of an eHealth-system (patient, provider, analyst)

\sim

- Focus on statistical modeling for tabular data in textual form
- Dive into the practicalities with an open-source approach in Python (yeah I know)

Usecases

...

- Making a realistic alternative to (sensitive) data available, e.g.
 - As a data controller, to universities for research
 - As a university researcher, to the outside world for reproducibility
 - As a company, to the architects, developers and testers that build your software
- Data augmentation for ML applications
- Realistic simulations / generate test data

Approaches

- Lorem ipsum ...
- Predefined structure/schema in which the gaps need to be filled
 - Random number/text generators
 - Lists of names, addresses, cities, locales...
 - Shuffling existing data
 - Inverse of regex matching
 - ...
- Libraries that do this will offer several generators for common data types, formats and locales

- Faker [https://faker.readthedocs.io/]
 - Also for PHP, Perl, Ruby, Java, ...
- Mimesis [https://mimesis.name/]

 Extensible with custom generation routines and schemas for your own datatypes from faker import Faker
fake = Faker('it_IT')
for _ in range(10):
 print(fake.name())

- # 'Elda Palumbo'
- # 'Pacifico Giordano'
- # 'Sig. Avide Guerra'
- # 'Yago Amato'
- # 'Eustachio Messina'
- # 'Dott. Violante Lombardo'
- # 'Sig. Alighieri Monti'
- # 'Costanzo Costa'
- # 'Nazzareno Barbieri'
- # 'Max Coppola'

```
>>> Faker.seed(0)
>>> for _ in range(5):
... fake.vat_id()
...
'BE6048764759'
'BE8242194892'
'BE1157815659'
'BE8778408016'
'BE9753513933'
```


• Similar "summary statistics" ≠ good mimicking of original data

• Conservation of distributions ≠ conservation of correlations

Age	Retired
15	FALSE
24	FALSE
50	FALSE
68	TRUE
72	TRUE
88	TRUE

1. Learn (joint) distributions from original data → model
 2. Repeatedly "sample" this model

Image © <u>Haoran Li</u>, <u>Li Xiong</u>, <u>Lifan Zhang</u>, and <u>Xiaoqian Jiang</u>, "DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing"

• Conditional sampling: keep some values fixed to sample a subset

• Generate data for rare or expensive events

• Create annotated datasets for machine learning

Image © Ernest Cheung, T.K. Wong, Aniket Bera, Xiaogang Wang, Dinesh Manocha "LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning"

\checkmark

- Agent-based Modeling
 - Complex dynamic systems (e.g. physics/biology simulations)
 - Generate interaction data
 - Tools: specialized frameworks: Repast (C++), MASON (Java), Mesa (Python), ...
- Virtual Environments
 - Robotics, self-driving, VR
 - Generate large amounts of different scenarios
 - Tools: 3D engines: Unity3D, GTA, X-Plane, ...
- Synthesizers
 - Audio, speech, generative artwork
 - Generate multimedia from (textual) annotations
 - Tools: text-to-speech systems, MIDI, WaveNet, Processing, ...

In practice

• Let's take a dataset and pick a software library:

	age	workclass	fnlwgt	education	marital-status	occupation	relationship	race	sex	hours-per-week	native-country	capital	income
0	39	State-gov	77516	Bachelors	Never-married	Adm-clerical	Not-in-family	White	Male	40	United-States	2174	<=50K
1	50	Self-emp-not-inc	83311	Bachelors	Married-civ-spouse	Exec-managerial	Husband	White	Male	13	United-States	0	<=50K
2	38	Private	215646	HS-grad	Divorced	Handlers-cleaners	Not-in-family	White	Male	40	United-States	0	<=50K
3	53	Private	234721	11th	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	40	United-States	0	<=50K
4	28	Private	338409	Bachelors	Married-civ-spouse	Prof-specialty	Wife	Black	Female	40	Cuba	0	<=50K

[Source: Kaggle, "Adult Census Income" dataset: <u>https://www.kaggle.com/datasets/uciml/adult-census-income</u>]

\sim

- https://sdv.dev/
- One of the larger open source Synthetic Data libraries (in Python)
- Supported methods:
 - Statistical: "copula" multivariate distributions
 - Deep learning: CTGAN (GAN for tabular data) / TVAE (Tabular Var. AutoEncoder)
 - Time series (in development) : PAR (Probabilistic AutoRegression)
 - Relational data (linked tables) : hierarchical model with underlying copula models
- Encode your own constraints
- Some evaluation and benchmarking options (limited)
- Commercial support by Datacebo Inc.

Getting started

```
from sdv import load_demo, SDV
# Use pre-loaded demo tables
metadata, tables = load_demo(metadata=True)
sdv = SDV()
sdv.fit(metadata, tables)
synthetic_data = sdv.sample()
print(synthetic_data)
```


\checkmark

- 1 # Display basic statistics about the dataset
- 2 print("Data description categoricals:")
- 3 actual_data.describe(include='object', datetime_is_numeric=True)

Data description - categoricals:

	workclass	education	marital-status	occupation	relationship	race	sex	native-country	income
count	48842	48842	48842	48842	48842	48842	48842	48842	48842
unique	7	16	7	15	6	5	2	42	2
top	Private	HS-grad	Married-civ-spouse	Prof-specialty	Husband	White	Male	United-States	<=50K
freq	33906	15784	22379	6172	19716	41762	32650	43832	37155

Let's take a look

\bigtriangledown

1	<pre># display count of every categorical value</pre>
2	<pre>for var in OPTS['categorical_vars']:</pre>
3	<pre>if var in actual_data:</pre>
4	actual_data[var].value_counts()
5	

Male 32650 Female 16192 Name: sex, dtype: int64

United-States	43832
Mexico	951
?	857
Philippines	295
Germany	206
Puerto-Rico	184
Canada	182
El-Salvador	155
•	
•	
Outlying-US(Guam-USV)	I-etc) 23
Yugoslavia	23
Scotland	21
Honduras	20
Hungary	19
Holand-Netherlands	1
Name: native-country	, dtype: int64

1 # Display basic statistics about the dataset
2 print("Data description - integers:")

3 actual_data.describe(datetime_is_numeric=True)

Data description - integers:

capital	hours-per-week	fnlwgt	age	
48842.000000	48842.000000	4.884200e+04	48842.000000	count
991.565313	40.422382	1.896641e+05	38.643585	mean
7475.549906	12.391444	1.056040e+05	13.710510	std
-4356.000000	1.000000	1.228500e+04	17.000000	min
0.000000	40.000000	1.175505e+05	28.000000	25%
0.000000	40.000000	1.781445e+05	37.000000	50 %
0.000000	45.000000	2.376420e+05	48.000000	75%
99999.000000	99.000000	1.490400e+06	90.000000	max

Results out-of-the-box (statistical Copula model)

	age	workclass	fnlwgt	education	marital-status	occupation	relationship	race	sex	hours-per-week	native-country	capital	income
0	39	State-gov	77516	Bachelors	Never-married	Adm-clerical	Not-in-family	White	Male	40	United-States	2174	<=50K
1	50	Self-emp-not-inc	83311	Bachelors	Married-civ-spouse	Exec-managerial	Husband	White	Male	13	United-States	0	<=50K
2	38	Private	215646	HS-grad	Divorced	Handlers-cleaners	Not-in-family	White	Male	40	United-States	0	<=50K
3	53	Private	234721	11th	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	40	United-States	0	<=50K
4	28	Private	338409	Bachelors	Married-civ-spouse	Prof-specialty	Wife	Black	Female	40	Cuba	0	<=50K

Generated 48842 synthetic samples. Displaying the first few rows:

	age	workclass	fnlwgt	education	marital-status	occupation	relationship	race	sex	hours-per-week	native-country	capital	income
0	46	Private	129352	Some-college	Married-civ-spouse	Farming-fishing	Not-in-family	Black	Male	52	South	1775	<=50K
1	21	Private	466882	5th-6th	Never-married	Prof-specialty	Not-in-family	White	Male	43	United-States	7510	<=50K
2	52	Local-gov	129500	Some-college	Divorced	Prof-specialty	Husband	White	Male	59	United-States	41618	<=50K
3	37	Self-emp-inc	124908	Some-college	Married-civ-spouse	Tech-support	Not-in-family	White	Female	43	United-States	7586	<=50K
4	38	Federal-gov	149033	Some-college	Married-civ-spouse	Adm-clerical	Wife	White	Male	42	South	1889	<=50K

\checkmark

1 # Display basic statistics about the dataset
2 print("Data description - categoricals:")
3 actual_data.describe(include='object', datetime_is_numeric=True)

Data description - categoricals:

... or in graphical form ...

Portugal Puerto-Rico Scotland

Taiwan Thailand

South

Trinadad&Tobago

United-States Vietnam

Yugoslavia

Nicaragua n-USVI-etc)

Outlying-US(Guam-USVI

Peru

Philippines

oland

Whut ?

\checkmark

- SDV's default built-in models deal particularly badly with:
 - Highly skewed or irregular distributions
 - Distributions with long tails
 - Rare or unique values (tend to be ignored)

 \rightarrow but this is all very common in real life datasets!

• There is a structural limit:

for rare values, there are not enough datapoints to be able to learn conditional distributions, nor correlations with other variables

• Tweaking SDV's parameters can help but doesn't do miracles

Adding CTGAN to the mix

Copula+CTGAN

What happens with numbers?

What happens with numbers?

capital capital original original generated generated llun. 0 · -5000

1 actual_data['capital'].nunique()

1 new_data['capital'].nunique()

\checkmark

- SDV does not know the meaning of any number
- Assumes smooth distributions -> interpolates when sampling
- In this dataset
 - "hours-per-week" behaves more like a categorical variable (fulltime, parttime, ...)
 - "capital" has plenty of 0, which might mean "no info / null" instead of "capital = \$0"

It's not as easy as "Load data & press start"...

\bigtriangledown

- What does a missing data point mean?
 - Numericals: can appear as NaN, but sometimes also 0, -1, -2³², ...
 - A missing year of birth doesn't mean a person was born in the year 0
 - Booleans: missing data = FALSE or missing data = third category?
- SDV deals in a peculiar way with missing data:
 - Categorical variable: considered just another category within the variable
 - Numerical variables are split in 2
 - 1 Boolean variable to decide "is it null"?
 - 1 numerical variable trained on all non-null values
 - Boolean variable: null values not supported
 - Not possible (yet) to generate data conditional on the absence of other data.

• Suppose our dataset masked the ages of all people <21 by setting it to -1

• Suppose that 'capital==0' actually means: no data (NaN)

Count data

• Some datasets contain count data:

Frost	Rain	Sun	# days
No	No	Yes	52
No	Yes	No	43
Yes	No	Yes	1
No	No	No	187
No	Yes	Yes	10

(obviously this table does not say that frost is present in 20% of the datapoints)

- For a correct data model:
 - 1. "unroll" the data (= undo the counting, expand) and delete count variable
 - 2. train the model and generate synthetic data
 - 3. recount / regroup the synthetic data

 There are no guarantees that a particular value will be drawn from the distribution, especially when those values are rare:

- Conditional generation allows to force the desired quantity of a value
- Conditioning on rare values may give repetitive results (because not enough data to properly learn conditional distributions)

• Columns can be fully dependent on others:

X	Υ	X+Y	2Y-X
2	4	6	6
8	7	15	6
0	1	1	2
1	0	1	-1

- SDV cannot detect dependencies, only approximately learns correlations
- For a correct data model:
 - Remove dependent columns
 - Learn model and generate data
 - Re-calculate and re-add the dependent columns

\bigtriangledown

- The meaning of the data may imply other dependencies
 - Date of birth < date of death
 - City = Antwerp \rightarrow Province = Antwerp \rightarrow postcode.startsWith('2')
 - Age < 18 \rightarrow child_benefits = true
 - Distance > 0
 - \$ORCL = Oracle
 - A 25-year-old in year X, cannot be 36 in year X+1
- Encode these in constraints
 - Some can be incorporated in the model
 - Others can be enforced by fusing columns
 - Others can be enforced through rejection sampling

Wrapping up

\bigtriangledown

- Synthetic data tools rarely work out of the box for datasets "in the wild"
 - Your model likely needs finetuning -> iterative process
 - You'll often want to add custom preprocessing for your data
- Long-tailed or irregular distributions complicate things and can give rise to statistical instability
 - Various strategies can mitigate the worst side-effects, but there is no silver bullet
- Know your data

• Minimize the number of columns

- To anonymize a dataset with *address* and *gender* : only synthesize new addresses
- Discard columns that don't need to be resynthesized
- Exploit knowledge about the data
 - Fuse columns that are strongly correlated (e.g. city and its province)
 - Use constraints to prevent generating nonsensical datapoints
 - Decide what to do with outliers and missing data and why
 - Merging the least-used categories into an "other" category, reduces the "long tail"
- Work with a well-selected sub-dataset to speed up finetuning

\bigtriangledown

- Possibilities for analytics on synthetic data are limited!
- Structure of the data is approximately mimicked
 - 1 variabele statistics (min, max, avg, etc) are mostly preserved,
 - Links between 2 variables (correlation, ...) are somewhat preserved,
 - Links between more variables (regressions, ...) are poorly or not preserved,
- → The suitability of synthetic data as drop-in-replacement for real data depends on usecase and data properties...
- We obtained the best results on datasets with
 - Few variables (columns)
 - Many datapoints for each value of each variable

- Modify personal data such that the original can no longer be derived
 - Related concepts: *differential privacy, k-anonymity*
- Privacy is improved by
 - Removing identifying attributes
 - Generalizing (e.g. only keep the year from a birthdate)
 - → inevitable loss of information and/or utility (which synthetic data tries to mitigate)
- On the model side: prevent overfitting / memorization of training data
- Toolkit for evaluation: ARX

\checkmark

- SDMetrics library (under development) provides some toolkit-agnostic evaluation routines
- Commercial providers often provide well-illustrated analysis reports - e.g. these cross-correlation graphs from gretel.ai :

the market

\bigtriangledown

• Commercial market for synthetic data tools is booming

Configuration: example tonic.ai

Pipeline: example mostly.ai

MOSTLY GENERATE

Logged in as jgsmalsr@gmail.com (via Google) 👻

uns				
ocumentation	Number of Rows 48,842	Number of Colum 13	าร	
ser Settings	Maximum Training Epoch 1,000	s Batch Size 64	Learning Rate 0.001	
	State • Training	g		
	2 Provisioning Finished provisioning.	mitted and is in the que	ue to be processed.	
	3 Encoding Finished encoding in [us-census-income]	24 seconds. 13 of 13 columns finishe	d 🕘	
	4 Training Training a generative	model for 4 seconds.		
	5 Generating Once we have a satisf	ying model, we will gen	erate the synthetic data.	
10STLY-AI				

Reports: example Gretel.ai

• Better results out-of-the-box

- Better estimation of data properties and subsequent setting of parameters
- Seems more up to speed with developments in deep learning
- User-friendly interfaces
- Built-in reports with clean graphics

Don't believe me? Ask these guys!

JRC TECHNICAL REPORT

Multipurpose synthetic population for policy applications

Hradec, J., Craglia, M., Di Leo, M., De Nigris, S., Ostlaender, N., Nicholson, N. "Current methods of data synthesis using open source tools are relatively powerful but only for flat tables, with limited number of constraints, low cardinality categorical variables and continuous, without hard breaks."

"Commercial solutions still beat the available research and open source solutions by a huge margin at the time of writing."

"The field is evolving very fast and we may expect competitive open source solutions in the near future."

[DOI 10.2760/50072 - July 2022]

And now what?

\checkmark

- Synthetic data, when quality-checked and carefully crafted, is free of privacy and other regulatory issues.
- The elimination of bureaucracy associated with sensitive data access, enables more flexibility: put synthetic data in the cloud, make it available as Open Data (democratization), ...
- Synthetic data can supply digital twins or test environments with plenty of data, and facilitate prototyping.
- The field is fast evolving while also steadily maturing. Multiple vendors already offer qualitative solutions.

\checkmark

- Inflated expectations: a synthetic dataset still differs from the original, and is therefore not always useful for every usecase.
- Synthetic data should not be taken at face value. User discretion is advised when interpreting results based on a synthetic dataset.
- Qualitative synthesis remains challenging in some common cases:
 - For hierarchical or very complex data
 - For small datasets, datasets with many columns, or with many unique values
- Creating good synthetic data still requires expertise, domain knowledge, careful verification and validation, and a good grasp of statistics.

What's next?

• Papers on diffusion models for tabular text are starting to appear:

TabDDPM: Modelling Tabular Data with Diffusion Models

30 Sep 2022 · Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, Artem Babenko · & Edit social preview

[Source: paperswithcode.com]

Questions? Shoot!

(or drop by the Smals booth in the centre aisle)

Joachim Ganseman Smals Research www.smalsresearch.be

Joachim Ganseman

joachim.ganseman@smals.be www.smalsresearch.be

Smals, ICT for society 02 787 57 11 Fonsnylaan 20 / Avenue Fonsny 20 1060 Brussel / 1060 Bruxelles