Cryptographic agility in practice Experiences from the Belgian public sector

Kristof Verslype Cryptographer, Smals Research

21 May 2025

Today

Cryptography is everywhere

- ✤ IoT, smartcard (Belgian eID, bank card), cars, planes, satellites, ...
- Financial transactions, communication, document signing, authentication,
- Defense, public sector, private sector, individuals
- \rightarrow If broken, our society collapses

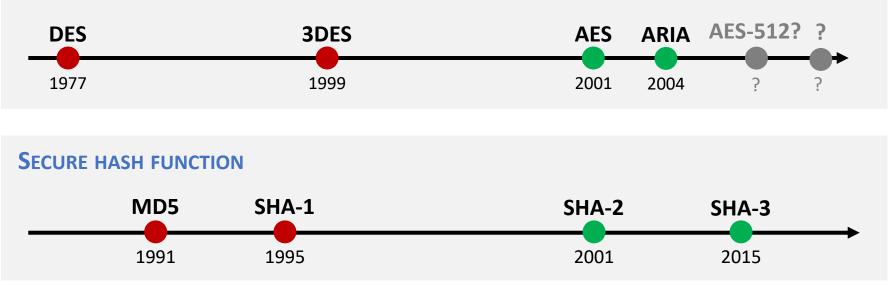
Cryptographically relevant quantum computers

Would be able to break modern (public-key) cryptography

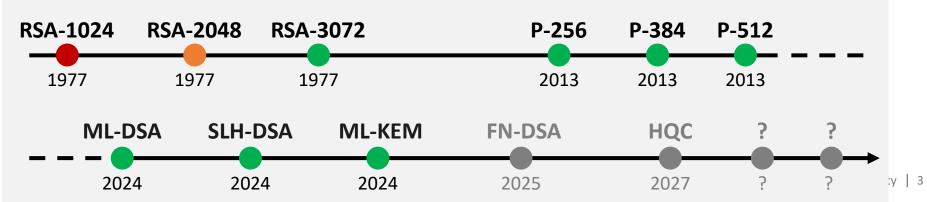
"To ensure an acceptable level of readiness, we recommend that [the most sensitive use cases] should be protected against 'store now, decrypt later' attacks as soon as possible, latest by the end of 2030."

Joint statement from partners from 18 EU member states (11/2024)

Other threats


- Increasing computing power
- Cryptanalysis
- Side-channel attacks in implementations

→ MIGRATE ON TIME TO RECOMMENDED CRYPTOGRAPHY


Cryptographic migrations

PUBLIC KEY CRYPTOGRAPHY

(E.g., digital signatures, key agreement, authentication)

Insecure
Phase-out
Secure / Recommended
Planned

SLOW, CUMBERSOME AND EXPENSIVE PROCESS - TAKES 5 TO 15 YEARS TO MIGRATE

MULTIPLE CRYPTO MIGRATIONS IN THE NOT-SO-DISTANT FUTURE!

Crypto migrations

Challenge

- Multiple in the past & multiple in the future
- Slow and cumbersome process Takes 5 to 15 years to migrate
- \rightarrow How to facilitate smooth migrations?

Approach

Cryptographic algorithms have a life cycle Recommended \rightarrow Secure \rightarrow Phase out \rightarrow Insecure

Cryptographic mechanisms are assets that need to be managed

We should accept this and act on it!

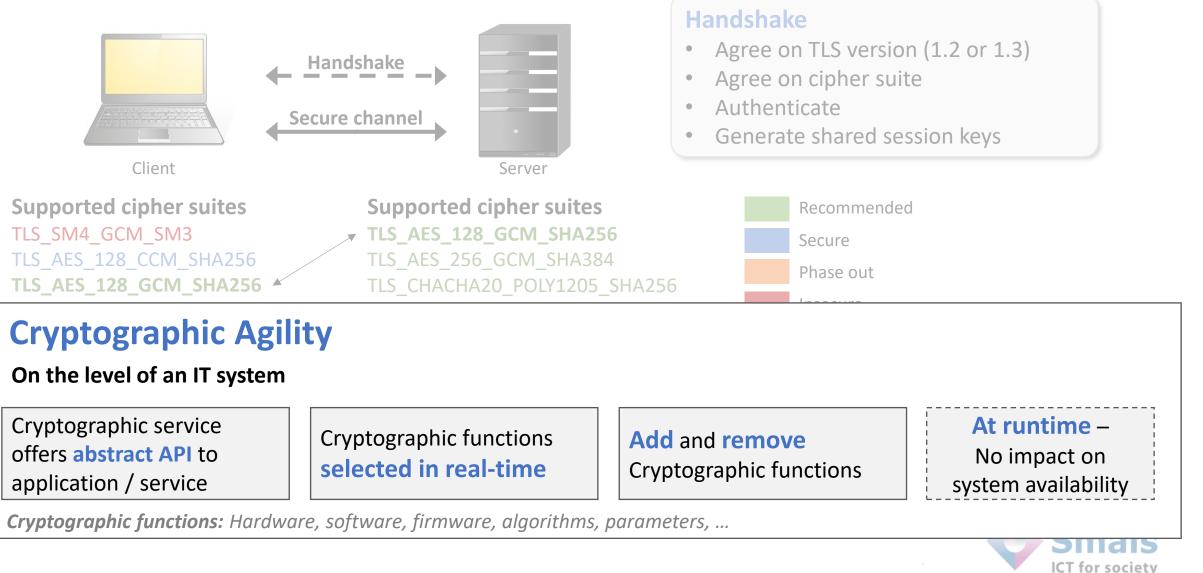
Improve cryptographic maturity

Insight

Crypto inventory Where what crypto for which purpose?

Guidance

Crypto policy What cryptography should (not) be used?


Flexibility

Crypto agility Migrate easily from/to crypto mechanisms

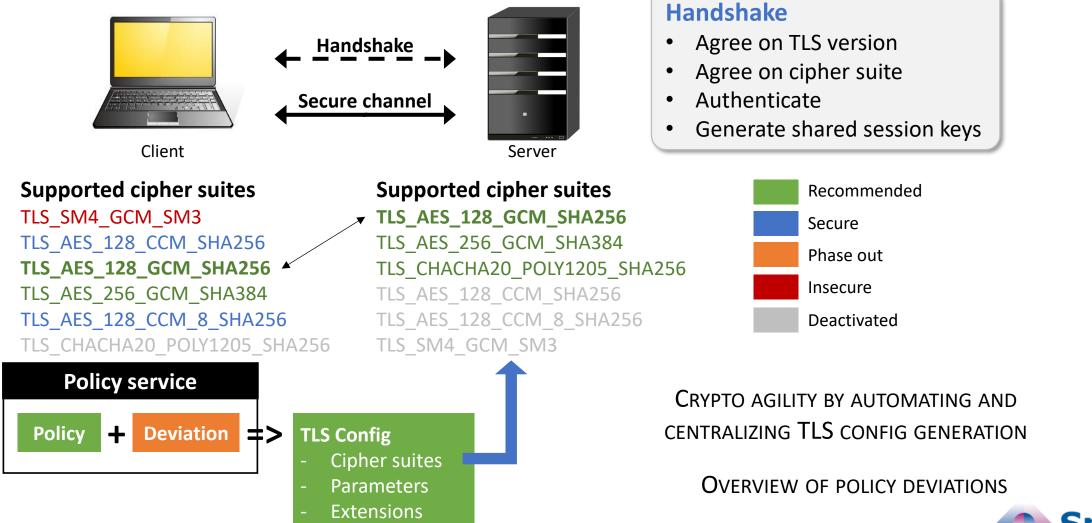
Transport Layer Security (TLS)

Example of cryptographic protocol agility (see RFC7696)

National Academies of Sciences, Engineering, and Medicine (2016) Cryptographic Agility and Interoperability: Proceedings of a Workshop. Forum on Cyber Resilience Workshop Series. (The National Academies Press, Washington, DC). https://doi.org/10.17226/24636

Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode
- Challenges
- Conclusions


Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode
- Challenges
- Conclusions

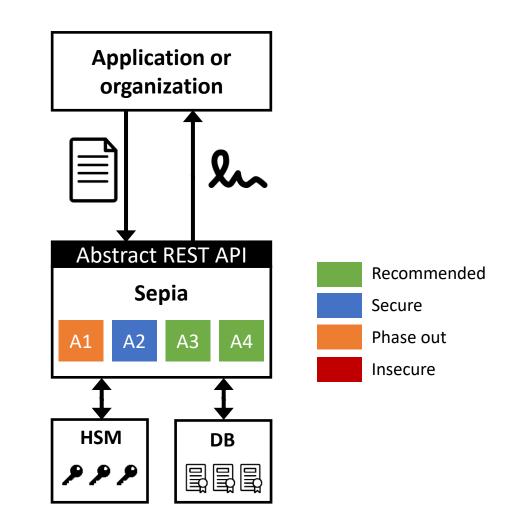
Transport Layer Security (TLS)

Example of cryptographic protocol agility (see RFC7696)

National Academies of Sciences, Engineering, and Medicine (2016) Cryptographic Agility and Interoperability: Proceedings of a Workshop. Forum on Cyber Resilience Workshop Series. (The National Academies Press, Washington, DC). https://doi.org/10.17226/24636

Sepia - Service for digital signatures

Service developed by Smals


Functionality

- Creates digital signatures on behalf of public sector organisations and services
- Automated or with human intervention
- Storage of signed documents with signature
- Secure storage of certificates and secret keys

Motivation

- Cost reduction by reuse See reuse catalog [1]
- Increase security
- Crypto agility!

CRYPTO AGILITY AND COST EFFICIENCY CAN COEXIST

Blind Pseudonimisation Service eHealth

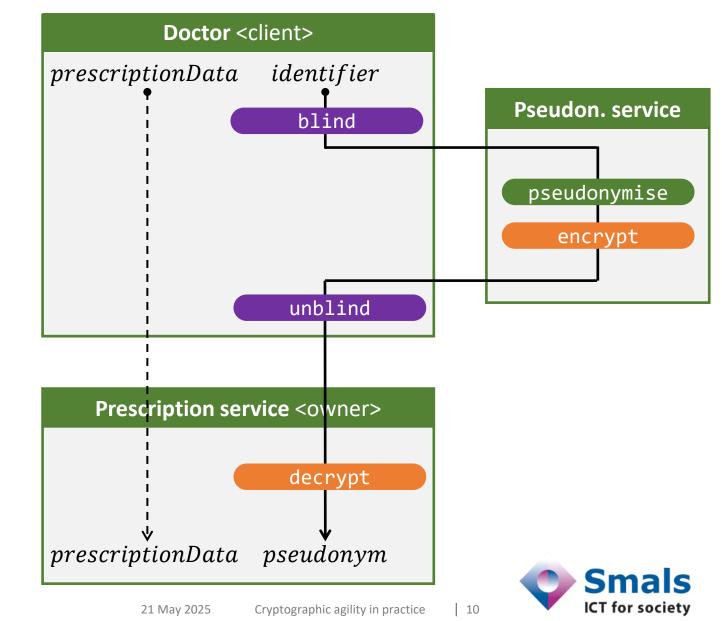
Shortlisted for *Best Cybersecurity Innovation Europe* award issued by Cybersec Europe

Data minimisation

- Doctor only sees identifiers
- Backend only sees pseudonyms
- Pseudon. service sees neither

Reduced overhead

- Direct communication between healthcare professional and prescription service
- ✤ No in-between entity


Low-intrusive side professional

- No extra keys required
- Relatively simple implementation

HOW QUANTUM RESISTANT IS THIS SOLUTION?

Scenario

Doctor requests Prescription service to register medical prescription

Blind Pseudonimisation Service eHealth

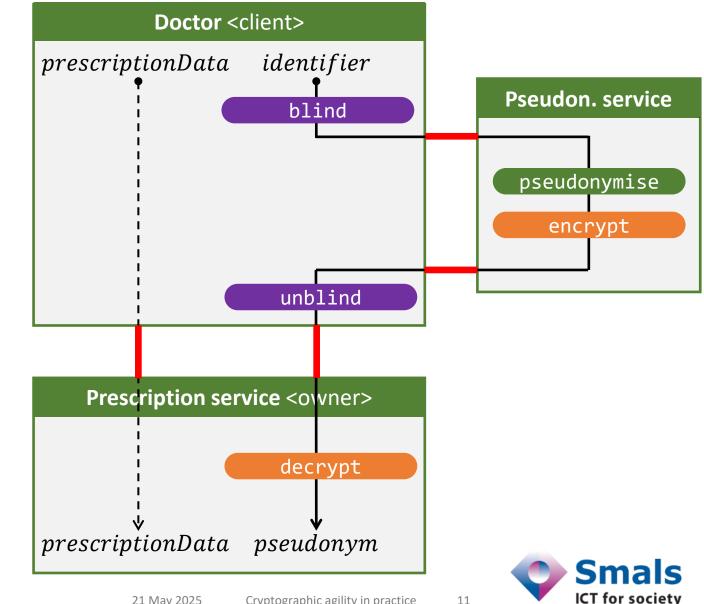
Cryptography

- Mix of symmetric and public-key (EC)
- Designed before NIST PQC standards
- Deviation from standards

Analysis

Communication (red lines)

- ✤ Most important
- Upgrade TLS clients and cipher suites
- Not different from other applications


Pseudonymisation

- Quantum risk backend-stored pseudonyms to be mitigated
- Alternative based on lattices
- Integration of crypto agility to facilitate migration

DEVIATING FROM STANDARDS MAKES QUANTUM READINESS HARDER

Scenario

Doctor requests *Prescription service* to register medical prescription

Cryptographic Agility in the Belgian Public Sector

TLS

- Deriving TLS configs from central policy-as-code and deviations-as-code
- Status: research

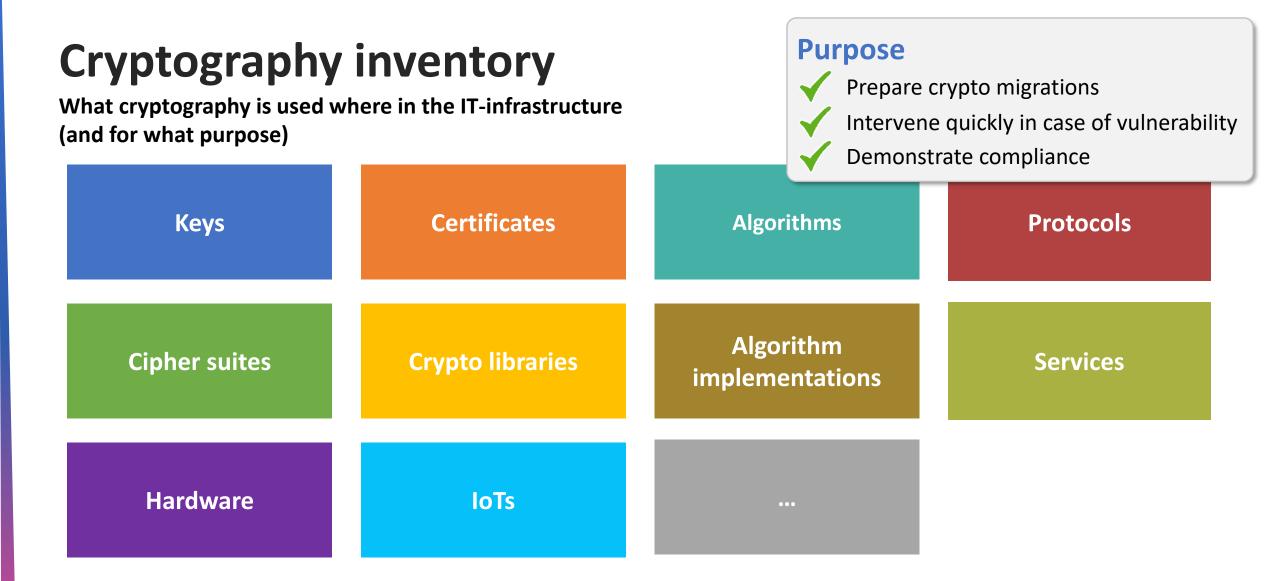
Sepia

- Central, flexible service for document signing
- Status: Final phase of development

Blind pseudon. service

- Quantum-resistant pseudonymization being developed
- Crypto-agility in future versions
- Status: research

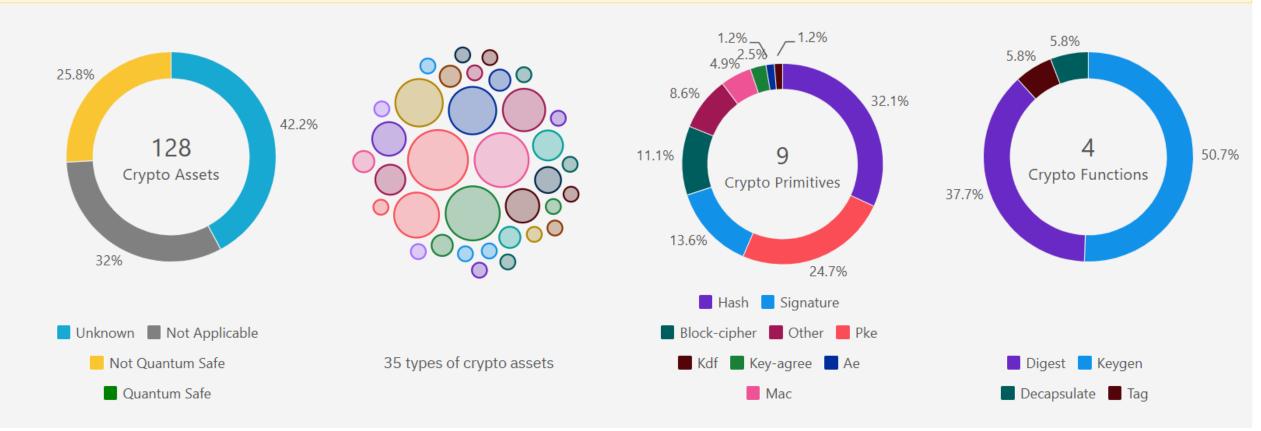
SMALS IS EARLY ADOPTER OF CRYPTO-AGILITY NEVERTHELESS, A LONG ROAD AHEAD OF US!



Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode
- Challenges
- Conclusions

IMPOSSIBLE MANUALLY – AUTOMATED PROCESSES REQUIRED EXPRESS CRYPTOGRAPHY INVENTORY IN MACHINE-READABLE WAY


github.com/keycloak/keycloak

CBOMkit

128 cryptographic assets found. Scanned **616.7K** lines of code across **5.3K** files. Took **2m 21s** to scan (**4m 7s** in total).

gitUrl: https://github.com/keycloak/keycloak revision: main commit: f8a4a8d

Not compliant – This CBOM does not comply with the policy "quantum_safe". Source: Basic Backend Compliance Service

List of all assets 📀 Scan finished

¢

Cryptographic asset	Туре	Primitive	Location	
PUBLIC-KEY	Related Crypto Material	Unspecified	BCFIPSECDSACryptoProvider.java:85	л ⊻
RAW	Algorithm	Other	HmacOTP.java:159	ہ ۲
EDDSA	Algorithm	Digital Signature	GeneratedEddsaKeyProvider.java:50	ہ ۲
EDDSA	Algorithm	Digital Signature	GeneratedEddsaKeyProviderFactory.java:133	~ ⊼ ⊻
HMAC-SHA256	Algorithm	Message Authentication Code	HMACProvider.java:41	_⊼ ⊻
HMAC-SHA256	Algorithm	Message Authentication Code	KeycloakModelUtils.java:215	_7 ⊻
SECRET-KEY	Related Crypto Material	Unspecified	AesCbcHmacShaEncryptionProvider.java:170	~⊼ ⊻
PUBLIC-KEY	Related Crypto Material	Unspecified	BCECDSACryptoProvider.java:80	~⊼ ⊻
RSA-2048	Algorithm	Public Key Encryption	KeyUtils.java:69	ہ ۲
RSA-2048	Algorithm	Public Key Encryption	RSAKeyValueType.java:103	л ⊻
Items per page: 10 🗸	11-20 of 128 items		2 ∨ of 13 pages	• •

Cryptography Bill of Materials (CBOM)

Object model to describe cryptographic assets and their dependencies. Developed by IBM, now OWASP standard

```
1 - {
   2
          "name": "RSA-2048",
          "type": "cryptographic-asset",
   3
          "bom-ref": "e2c92908-3559-4f86-8212-2e134dfce30a",
   4
          "evidence": {
   5 -
              "occurrences":
   6 -
                  {
   7 -
                      "line": 110,
   8
                      "offset": 28,
   9
                      "location": "core/src/main/java/org/keycloak/jose/jwk/AbstractJWKParser.java",
 10
                      "additionalContext": "java.security.KeyFactory#getInstance(Ljava/lang/String;)Ljava/security/KeyFactory;"
 11
                  },
  12
 13 -
                  {
                      "line": 103.
 14
                      "offset": 39,
 15
                      "location": "saml-core-api/src/main/java/org/keycloak/dom/xmlsec/w3/xmldsig/RSAKeyValueType.java",
 16
                      "additionalContext": "java.security.KevFactory#getInstance(Ljava/lang/String:)Ljava/security/KevFactory:"
 17
 18
                  },
 19 -
                  {
                      "line": 122.
 20
                      "offset": 39.
 21
                      "location": "saml-core-api/src/main/java/org/keycloak/dom/xmlsec/w3/xmldsig/RSAKeyValueType.java",
 22
                      "additionalContext": "java.security.KevFactory#getInstance(Ljava/lang/String:)Ljava/security/KevFactory:"
 23
 24
                  }
 25
  26
 27
https://github.com/IBM/cbomkit/blob/main/example/keycloak-cbom.json
```

CBOM - Structure and Cryptographic Asset Types

rypto F	Properties						
	Algorithm Properties						
			Certificate	Properties			
Protocol Properties							
Related Crypto Materials Properties							
	Public Key	Key	Salt	Credential	Password	Ciphertext	
	Private Key	Digest	Shared Secret	Token	Signature	Seed	
	Secret Key	Initialization Vector	Tag	Additional Data	Nonce	Other	

ICT for society

18

CBOM Authorative Guide

Authoritative Guide to CBOM

Implement Cryptography Bill of Materials for Post-Quantum Systems and Applications

19

https://cyclonedx.org/guides/OWASP_CycloneDX-Authoritative-Guide-to-CBOM-en.pdf

Consolidating Crypto Inventory

Dynamic scanning

- External network
- Internal network

 \rightarrow NOT CBOM

Static scanning

- IT assets
 - (IoT, servers, ...)
- Databases
- Code
- \rightarrow CBOM

Internal import

- Home-build applications
- Certificate management
- \rightarrow CBOM

External import

- Cloud services
- External libraries
- Operating systems
- ✤ Hardware
 - (HSM, firewalls, ...)
- \rightarrow CBOM

NEED TO CONSOLIDATE EVERYTHING IN ONE INVENTORY & KEEP IT UP-TO-DATE (REQUIRES AUTOMATED, INTEGRATED PROCESSES \rightarrow LONG SHOT)

START SIMPLE, WITH A FOCUS ON YOUR MOST VALUABLE ASSETS CONSOLIDATE WHAT YOU ALREADY HAVE

Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode
- Challenges
- Conclusions

Crypto policy – Current situation

Symmetric Encryption Schemes

Created by Kristof Verslype, last updated on Jul 29, 2024 • 5 minute read

Corresponds to section 3. Symmetric Encryption Schemes in BSI TR-02102-1 (version 2024).

Symmetric encryption schemes are used to guarantee the confidentiality of data that is transmitted, for example, via a public chann guaranteed. For integrity protection, see Chapter 6 and Section A.1. Even in cases where at first glance the protection of the confide

integrity-securing mechanisms can easily lead to weaknesses in the overall cryptographic system, which then also makes the system vumerable to attacks on connuentiancy. In particular, such vulne active side-channel attacks,

3.1 Block ciphers

A *block cipher* is an algorithm that encrypts a plaintext of fixed bit length (for example 128 bits) by means of a key to a ciphertext of the same bit length. This bit length is also called *block size* of th of other lengths, block ciphers are applied in different *modes*.

3.1.1 Algorithm

Good

For new cryptographic applications, only block ciphers whose block size is at least 128 bits should be used. The following block ciphers are recommended for use in new cryptographic systems:

Algorithm name	Security level	Key Size	Block size	Reference
AES-128	128	128	128	FIPS PUB 197 [3]
AES-192	192	192	128	FIPS PUB 197 [3]
AES-256	256	256	128	FIPS PUB 197 [3]

So far, there are no negative findings on Serpent and Twofish, however, the security of those block ciphers has been examined much less intensively.

The best known attacks against AES that do not require related-keys achieve only a slight advantage over generic attacks.

Curent situation

- Smals has cryptographic recommendations.
- Based on recommendations German BSI

ntegrity

even th

Next step: express as code

Crypto policy as code - AES-128-GCM

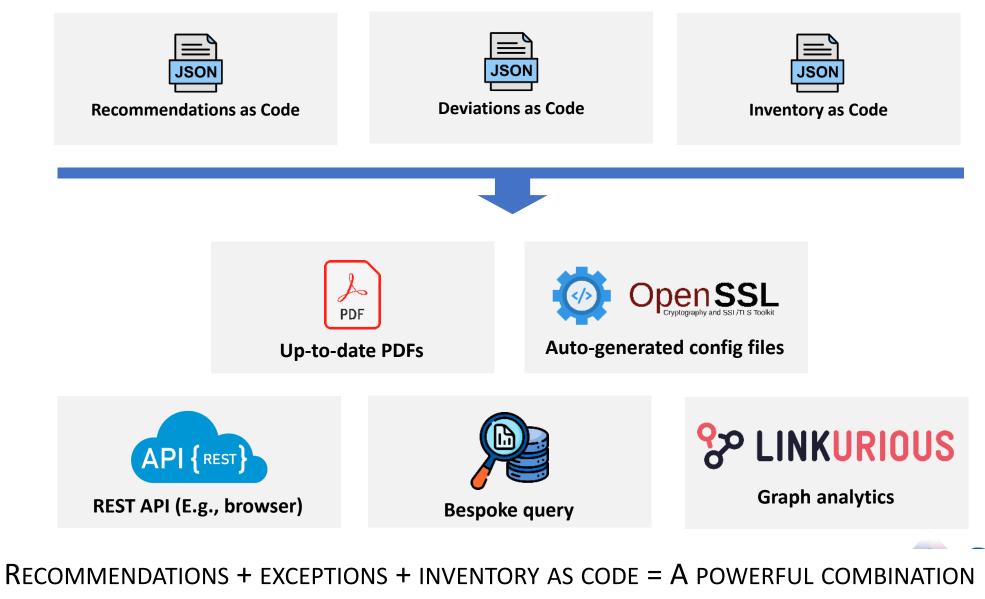
CBOM model		Recommendation		Keep structure	
<pre>"components": [{ "type": "cryptographic-asset", "name": "AES-128-GCM", "cryptoProperties": { "assetType": "algorithm", "algorithmProperties": { "using and a model of the methods and a method a</pre>		"components": [{ "type": "cryptographic-asset", "name": "AES-128-GCM", "cryptoProperties": { "assetType": "algorithm", "algorithmProperties": { "ussignations it is a light of the additional light of the additis additin ad	• * Reco •	Keep names and identifiers No information-duplication mmendations as guide Include additional information, s.a., conditions of use	
"primitive": "ae", "parameterSetIdentifier": "128", "mode": "gcm", "executionEnvironment": "software-plai "implementationPlatform": "x86_64", "certificationLevel": ["none"], "cryptoFunctions": ["keygen", "encrypt" "classicalSecurityLevel": 128,	<pre>"primitive": "ae" }, "recommendation": { "level": "recommended", "standardization": ["FIPS PUB 197 (2001)", "NIST SP 800-38D (2007)" "conditions": ["For initialization vectors, a bit length of 96 bits is recommended." "A key change is required after at most 2^32 calls of the authentic</pre>				
	vel Security Des				
}, "oid": "2.16.840.1.101.3.4.1.6"	At least as ha	ard to break as AES128 (exhaustive ke	ithin the lifetime of a key.", ",		
} }	At least as ha	ard to break as SHA256 (collision sear	rch)	th IV = j, we never take a	
] III	At least as ha	At least as hard to break as AES192 (exhaustive key search)			
IV	At least as ha	At least as hard to break as AES192 (exhaustive key search)			
V	At least as ha	ard to break as AES256 (exhaustive ke	ey search)		

.

Design principles

Maximize CBOM compatibility

Deviations


Ensure in a controlled way availability for users and compatibility with systems

```
"deviations": [
  "scope": {
   "type": "application",
   "name": "Quatro",
   "info": "https://...",
   "module": "..."
  "approval": {
   "approvalDate": "01/05/2023",
   "from": "01/05/2025",
   "until": "31/12/2025",
   "reference": "...".
   "justification": "Ensure availability for ..."
  "assessment": {
   "risk": "medium",
   "impact": "medium",
   "probability": "medium",
   "data": "...",
   "explanation": "..."
```

```
"allow": {
   "type": "cryptographic-asset",
   "name": "TLSv1.3",
   "cryptoProperties": {
    "oid": "1.3.18.0.2.32.111",
    "assetType": "protocol",
    "protocolProperties": {
     "type": "tls",
     "version": "1.2",
     "cipherSuites":
       "name": "TLS_DH_RSA_WITH_AES_128_CBC_SHA256",
       "identifiers":
        "0x00",
        "0x3F"
```


Crypto policy as code

mals for society

EVERYTHING AS CODE ENABLES A HIGH DEGREE OF AUTOMATION AND INSIGHT

Smals is working on this

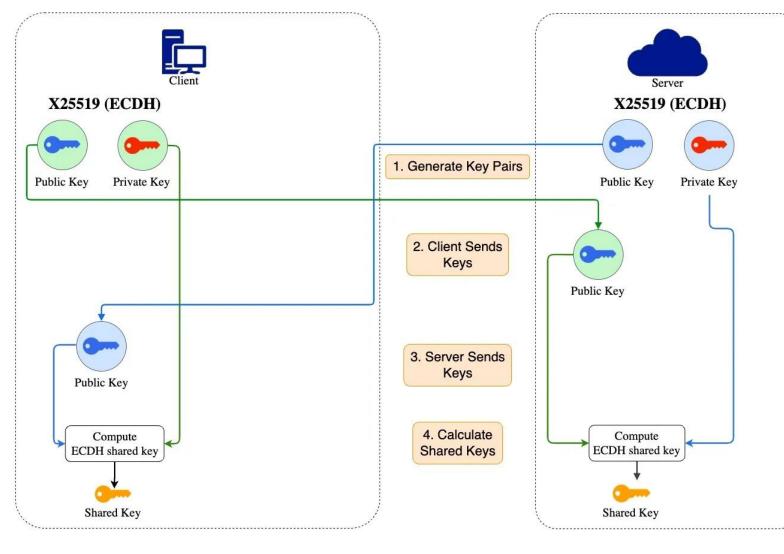
Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode
- Challenges
- Conclusions

Transitional period in Hybrid Mode

Bundesamt für Sicherheit in der Informationstechnik

The quantum-safe algorithms that are currently being standardized are not yet as well researched as the "classical" methods (for example RSA and ECC). This applies in particular to weaknesses that largely only become apparent in applications, such as typical implementation errors, possible sidechannel attacks, etc. BSI therefore that recommends post-quantum cryptography should not be used in isolation if possible, but only in hybrid mode, i.e. in combination with classical algorithms. [...] Hash-based signatures can in principle also be used on its own (i.e., not in hybrid mode).

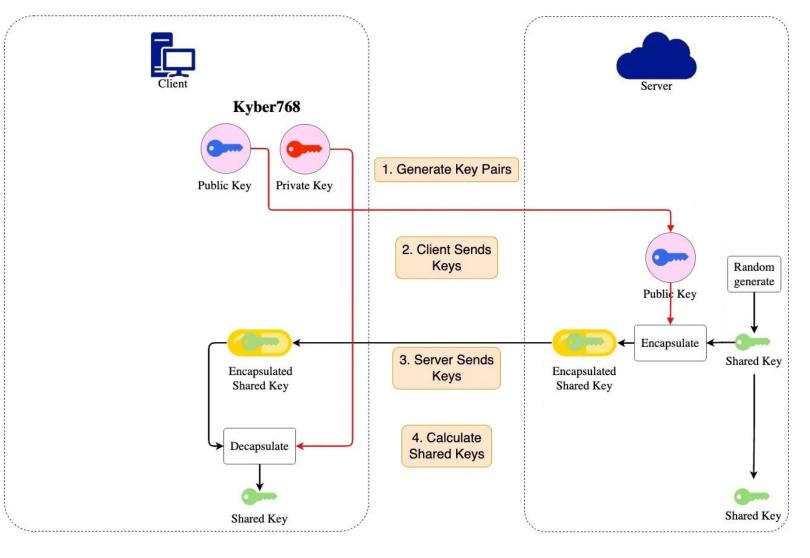

Quantum-safe cryptography –fundamentals, current developments and recommendations. October 2022

Key Agreement – Diffie Hellman

Highly trusted, but quantum vulnerable

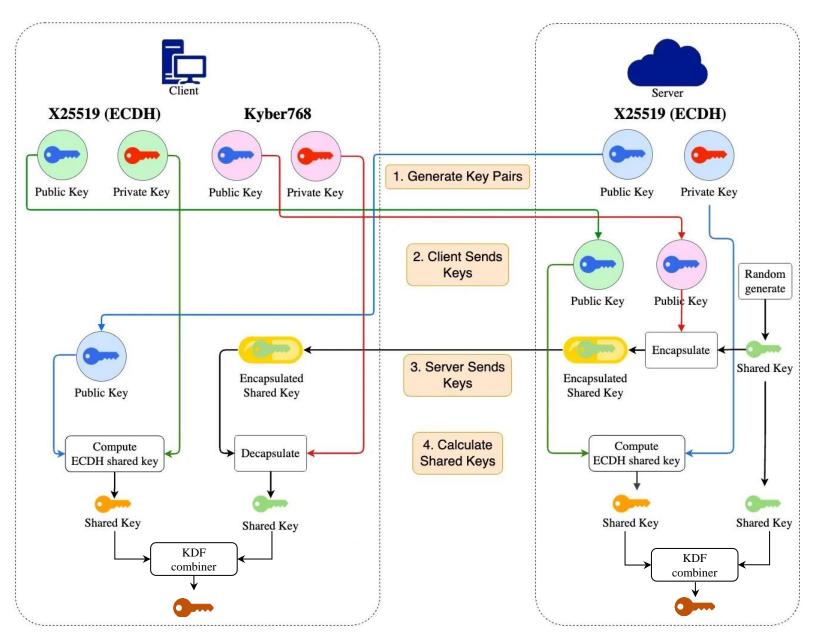
Symmetric protocol

Client and server perform the same operations


https://medium.com/identity-beyond-borders/x25519kyber768-postquantum-key-exchange-for-https-communication-70eba681931d

Key Agreement – Kyber (ML-KEM)

Quantum resistant, but not yet sufficiently trusted


Asymmetric protocol

Client and server do different operations

https://medium.com/identity-beyond-borders/x25519kyber768-postquantum-key-exchange-for-https-communication-70eba681931d

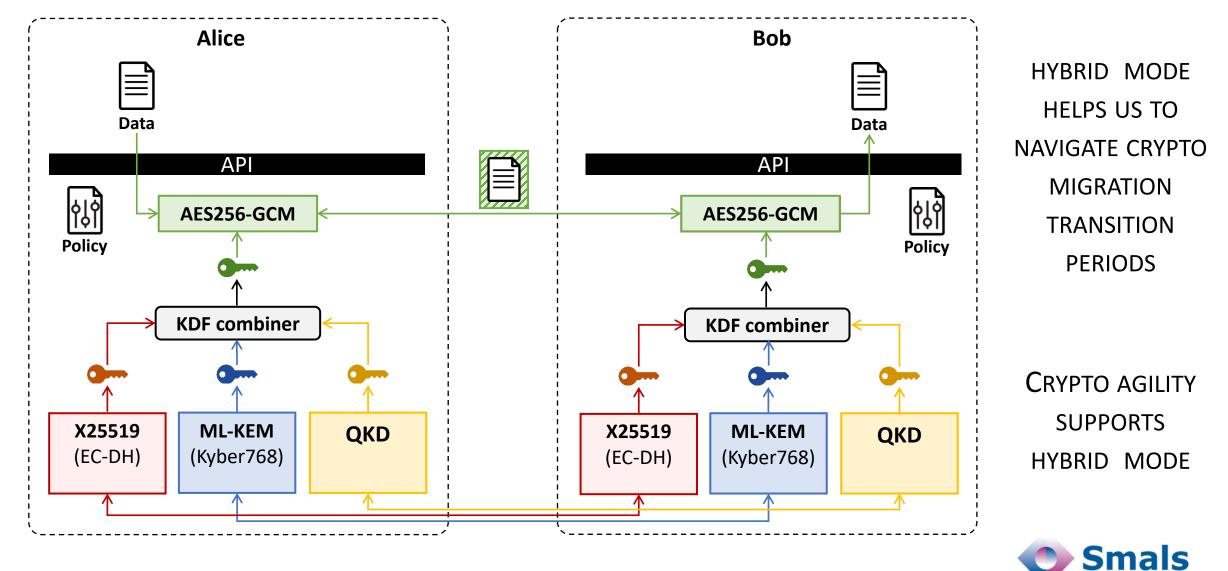
Key Agreement – Hybrid mode

Combinable

Despite differing principles/flow

Migration

Diffie-Hellman \rightarrow Hybrid \rightarrow Kyber / ML-KEM)


Penalty

31

- Adds complexity
- Increased data transmission (not much worse than PQC only)

Key agreement – Hybrid mode with Crypto Agility

ICT for society

Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode

Challenges

Conclusions

Challenges & open questions

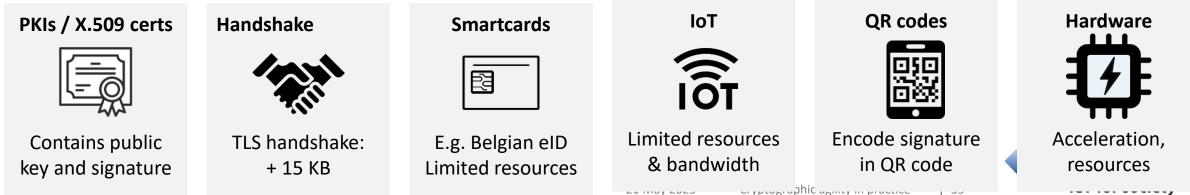
		Research o	on CA	
Perforr	nance	Legacy	Middleboxes	
Standard	S	Dov	wngrade attacks	F G
QR-codes		ΙοΤ	Incompatibilities	
Advanced cryptography			Guidance	/
	X.509 cert	ificates	Smartcards	/
HSMs		Cryptogr	aphic accelerators	100

BECOMING QUANTUM-READY IS HARD, BECOMING CRYPTO AGILE EVEN HARDER

BUT... IT PAYS OFF IN THE LONG RUN!

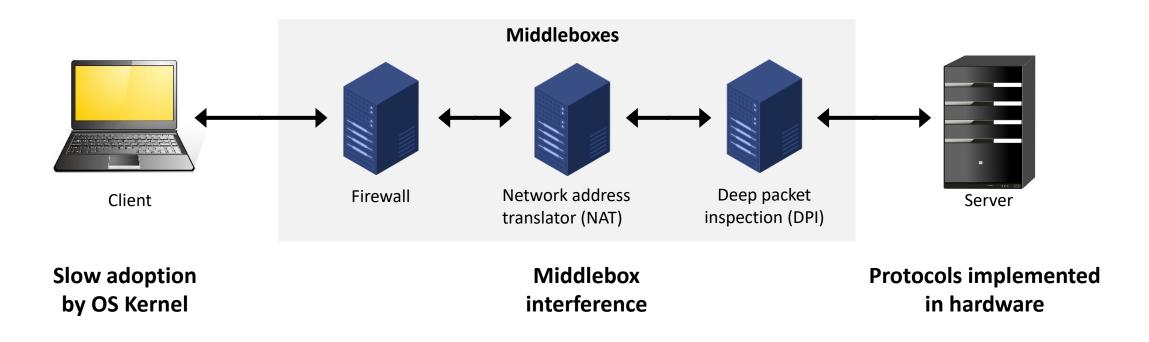
21 May 2025

Cryptographic agility in practice


34

Increased overhead

Digital signature algorithms


	Quantum Resistant	Public key size (in bytes)	Signature size (in bytes)	CPU time - sign (lower is better)	CPU time- verify (lower is better)
Ed25519 (Elliptic curves)	No	32	64	1 (baseline)	1 (baseline)
RSA-2048	No	256	256	70	0,3
ML-DSA-44 (Dilitium2)	Yes	1 312	2 420	4,8	0,5
FN-DSA-512 (Falcon512)	Yes	897	666	8	0,5
SLH-DSA-128s (SPHINCS+128s)	Yes	32	7 856	8 000	2,8
SLH-DSA-128f (SPHINCS+128f)	Yes	32	17 088	550	7

Impact

Protocol ossification

Loss of flexibility, extensibility and evolvability of network protocols.

PROTOCOL OSSIFICATION HINDERS CRYPTO AGILITY

IMPORTANCE OF TESTING BEFORE MIGRATION IN LIVE PRODUCTION ENVIRONMENT

Agenda

- Intro / recap
- Crypto Agility in the Public Sector
- Crypto inventory
- Crypto Policy as Code
- Cryptography in Hybrid mode
- Challenges

Conclusions

Crypto-Agility Maturity Model (CAMM)

Proposal – not yet standardized or adopted – for IT-systems

Initial / Not possible

At least one subsystem or component violates L1 requirements

Possible

Systems can be adapted to respond dynamically to future crypto challenges

Knowledge

- System knowledge
- Cryptography inventory

Process

- Updateability
- Reversibility

System property

✤ Extensibility

Prepared

Actual crypto migration still requires some preparatory work

Knowledge

Algorithm IDs

System property

- Cryptographic modularity (API)
- ✤ Algorithm
- intersection
- Algorithm exclusion
- Opportunistic
 - security
- Usability of crypto agility

Practiced

Crypto migration demonstrable, effectively and securely feasible

Knowledge

- Performance awareness
- Secure crypto agility

Process

- Policies
- Compliance testing
- Enforceability of CA
- Transition
- mechanism
- Effectiveness

System property

- Hardware modularity
- Backwards compatibility

Sophisticated

Enables fast crypto migration, applied on broader infrastructure

Process

- ✤ Automation
- Scalability
- ✤ Real-time

System property

- Context independence
- Cross-system interoperability

Crypto-Agility Maturity Model (CAMM)

Proposal – not yet standardized or adopted – for IT-systems

Initial / Not	Possible	Prepared	Practiced	Sophisticated
possible At least one subsystem or component violates	Systems can be adapted to respond dynamically to future crypto challenges	Actual crypto migration still requires some preparatory work	Crypto migration demonstrable, effectively and securely feasible	Enables fast crypto migration, applied on broader infrastructure
L1 requirements	Process (No	Knowledge Algorithm IDs APHIC AGILITY IS Application OFFICIAL MAPS AVAILABLE Algorithm intersection LY ADOPTER AND HAS S Opportunistic security Usability of crypto agility	YET)rocess Policies Compliance testing 	 Process Automation Scalability Real-time System property Context independence Cross-system interoperability

https://camm.h-da.io/

9

Advice from the BSI

"

If I could give companies and organisations three pieces of advice as they prepare for quantum safety, they would be:

- Include the threat in your risk management system
- Create a crypto inventory
- Implement and use crypto-agility

Dr. Gerhard Schabhüser Vice President, BSI

21 May 2025

"

<u>Source</u>: KPMG, BSI. *Market Survey on Cryptography and Quantum Computing*. 22/08/2023.

Cryptographic agility in practice

40

Thanks for your attention!

Feedback / questions / discussions welcome! See you at our booth (05.F034, next to theatre 1)!

www.smals.be www.smalsresearch.be www.cryptanium.eu

