The Quantum World

Tania Martin Smals Research www.smalsresearch.be

Hypothetical scenario

Hypothetical scenario

Hypothetical scenario

It's too important to be set aside!!!

House Homeland Security Committee Chairman Michael McCall is calling on Congress to increase spending on quantum computing research to ensure that the U.S. is the first nation to employ quantum computing as a tool to decrypt data.

- September 2016

It's too important to be set aside!!!

No small effort

Estimated annual spending on non-classified quantum-technology research, 2015, €m

A certain future

A certain future

$$
\frac{1}{\sqrt{2}}\left|>+\frac{1}{\sqrt{2}}\right| \leadsto>
$$

Quantum computer technology

What is a quantum computer?

A digital computer uses transistors to perform computation of data

A quantum computer uses quantum properties of the matter to perform
computation of data

Examples of used *matter*

Formally, any matter used in quantum mechanics can be in a superposition of 2 states

Understand the superposition

Recap

What does $\left.\left.\left.\frac{1}{\sqrt{2}}\right|_{y y}\right\rangle+\left.\frac{1}{\sqrt{2}}\right|_{\text {, }}\right\rangle$ mean?

What does $\left.\left.\left.\frac{1}{\sqrt{2}}\right|_{y}\right\rangle+\left.\frac{1}{\sqrt{2}}\right|_{\Rightarrow n}\right\rangle$ mean?

Reference to Schrödinger's cat

Equal probability that cat is alive or dead:

$$
\alpha=\beta=\frac{1}{\sqrt{2}}
$$

思

1 bit

Either 0 or 1

N bits

1 out of 2^{N} possible states

Both 0 and 1
N qubits
$\alpha_{1}|00 \ldots 0\rangle+\alpha_{2}|00 \ldots 1\rangle+\ldots+\alpha_{2^{N}}|11 \ldots 1\rangle$

All out of 2^{N} possible states $\sigma / 0$

Consequences of 娄

Mathematical operation on N
\checkmark
Parallel computation on $\mathbf{2}^{\boldsymbol{N}}$ data

Goal

Exploit the mechanical properties to perform crypto tasks

Quantum Random Number Generator

Quantum Key
 Distribution

Quantum Random Number Generator

Generate better high-quality random numbers

$\begin{array}{llll}\bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet\end{array}$
Yutools

Based on:

- Radioactive decay
- Noise
- Quantum optics

Quantum Random Number Generator

 Single-photon splitting

Quantum Key Distribution

Transfer La securely from Alice to Bob

From $\mathbf{L}_{\mathbf{a}}^{\boldsymbol{a}}$, produce a random shared
 secret key

Quantum Key Distribution Polarization of a photon

Quantum Key Distribution Polarization of a photon

Unpolarized photon

4 polarized photons
Polarization filter

Beam splitter

Not readable during transfer otherwise qubits are disturb

Quantum Key Distribution The BB84 protocol

Quantum Key Distribution The BB84 protocol

c

Quantum Key Distribution The BB84 protocol

Quantum Key Distribution
 The BB84 protocol

Quantum Key Distribution Eavesdropping the BB84 protocol

(3)

(1)

(4) Detection (error rate) \& abortion

Quantum Key Distribution In practice

Currently

The highest bit rate for QKD with optical fiber is held by Toshiba with 1 Mbit/s over 50 km
[up to our knowledge]

Limitation on the distance of key exchange

Goal

Exploit the mechanical properties to crack/solve hard problems

Shor's algorithm
Grover's algorithm
HHL's algorithm
Quantum simulator
Etc...

Shor's algorithm

Created by Peter Shor (1994)

Solve
 prime factorization in polynomial time

Prime factors:

$$
2,2,3,7,13
$$

$1092=2^{2} * 3 * 7 * 13$

Shor's algorithm

 Breaking public-key cryptography
E.g. an RSA number:

$$
N=p * q, \text { where }(p, q) \text { are prime numbers }
$$

Easy to compute N from (p, q)

Hard to recover (p, q) from N with standard methods

RSA-1024 =
135066410865995223349603216278805969
938881475605667027524485143851526510
604859533833940287150571909441798207
282164471551373680419703964191743046
496589274256239341020864383202110372
958725762358509643110564073501508187
510676594629205563685529475213500852
879416377328533906109750544334999811

Shor's algorithm

 Breaking public-key cryptography
E.g. an RSA number:

$$
N=p * q, \text { where }(p, q) \text { are prime numbers }
$$

Easy to compute N from (p, q)

Easy to recover (p, q) from N with Shor's algorithm

RSA-1024 =
135066410865995223349603216278805969
938881475605667027524485143851526510
604859533833940287150571909441798207
282164471551373680419703964191743046
496589274256239341020864383202110372
958725762358509643110564073501508187
510676594629205563685529475213500852
879416377328533906109750544334999811
150056977236890927563

Grover's algorithm

Created by Lov Grover (1996)

Solve
 invertion of function

in sub-linear time

Grover's algorithm

Searching an unstructured DB / an unsorted list
E.g. searching a phonebook where:

- x is a name $\cdot y=f(x)$ is a phone number

Easy to find y from (f, x)

Hard to find x from (f, y) with standard methods

Grover's algorithm

Searching an unstructured DB / an unsorted list
E.g. searching a phonebook where:

- x is a name $\cdot y=f(x)$ is a phone number

Easy to find y from (f, x)

Easy to find x from (f, y) with Grover's algorithm

Grover's algorithm

Searching an unstructured DB / an unsorted list
E.g. searching a phonebook where:

- x is a name $\cdot y=f(x)$ is a phone number

Easy to find y from (f, x)

Easy to find x from (f, y) with Grover's algorithm

Grover's algorithm

Breaking symmetric-key cryptography

Simple solution
Use loo000000000onger keys!

Goal

Cryptographic schemes/algorithms resistant to attacks

Hash-based crypto

Created by Ralph Merkle (1970)

Alternative to signature schemes like RSA/DSA/ECDSA

(1)
(2)

(4) 3

Hash-based crypto

 The Lamport signature schemeρ and ρ must be used only once

(1) Create private key ρ and public key

Hash-based crypto

 The Lamport signature scheme

Hash-based crypto

The Lamport signature scheme

$$
\square=1101
$$

$$
\mathbf{Q}=\text { random random random random }
$$

Hash-based crypto

The Lamport signature scheme

(4) Verify signature with ρ

Hash-based crypto

The Lamport signature scheme

To be quantum-resistant

The lengths of random, hash and random must be > x2 larger than the security parameter

A 128-bit security requires lengths > 256 bits

Hash-based crypto

 The Merkle signature scheme
(1) Create private key ρ and public key ρ

Hash-based crypto

 The Merkle signature scheme

Hash-based crypto

 The Merkle signature scheme

$$
\text { Sig }=\square
$$

$\mathrm{h}[1,0] \quad \mathrm{h}[2,1]$

(3) Sign data with ρ and public key

Hash-based crypto

 The Merkle signature scheme

Code-based crypto

Created by Robert McEliece(1978)

Alternative to
 PK encryption
 like RSA/ECC

Based on error-correcting code

Most well-known

- the McEliece cryptosystem
- the Niederreiter cryptosystem
- the Courtois-Finiasz-Sendrier signature scheme

Code-based crypto The principles

```
The size of \rho}\mathrm{ is extremely large:
    >8,3 Mbits to be quantum-resistant
```

(1)

(4) Decrypt with ρ

Lattice-based crypto

Lattices first studied by Lagrange \& Gauss ($18^{\text {th }}$ century)

Alternative to PK encryption like RSA/ECC

Lattice-based crypto The most well-known schemes

Encryption

- the Peikert ring-LWE key exchange
- the Goldreich-Goldwasser-Halevi encryption scheme
- NTRUEncrypt

Signature

- the Gunesyu-Lyubashevsky-Poppleman ring-LWE scheme
- the Goldreich-Goldwasser-Halevi signature scheme
- NTRUSign

Hash

- SWIFFT (based on Fast Fourier Transform)
- LASH (LAttice based haSH function)

Lattice-based crypto Security assumptions

Learning With Errors (LWE)

Find x from (f, y) when y contains errors

Shortest Vector Problem (SVP)

Find the shortest vector in a lattice

[and its sub-problem]

Short Integer Solution (SIS)

Find the shortest vector in specific lattices

Post-quantum actors

PQCRYPTO ICT-645622

National Institute of Standards and Technology

World Class Standards

The helper: evolution

Michele Mosca

Co-Founder, President and CEO of evolution
 Project leader of OPENQUANTUM SAFE

Quantum risk assessment

Quantum safe hardware \& software

Roadmap design \& implementation
Education service

The integrator: OPENQUANTUM SAFE

1
Open source C library liboqs
for quantum-resistant
 cryptographic algorithms

Recommandations

Quantum tech is not a dream

How to be quantum-resistant

Be careful with PQC

Hash-based crypto

- Keys must be used once
- Lengths of variables and keys must be long enough (> x2) to be quantum-resistant

Code-based crypto

- Size of public key is extremely large (> 8,3 Mbits) to be quantum-resistant

Lattice-based crypto

- Not mature yet

Tania Martin

027875605
tania.martin@smals.be

Smals

(www.smals.be
 @Smals_ICT
 www.smalsresearch.be
 @ @SmalsResearch

