The Quantum World

Tania Martin Smals Research www.smalsresearch.be

June 2017

Hypothetical scenario

Hypothetical scenario

What the hell!!!

I hope for you (my dear Research team) that you have anticipated this HUGE problem that can threaten much of our business (eID, communication protocols, etc.)!!!

Euh, sorry but no, we decided that it was not urgent...

Hypothetical scenario

It's too important to be set aside!!!

House Homeland Security Committee Chairman Michael McCall is calling on Congress to **increase spending on quantum computing research** to ensure that the U.S. is the first nation to employ quantum computing as a tool to decrypt data.

— September 2016

It's too important to be set aside!!!

A certain future

QC = Quantum Computer

A certain future

Quantum computer technology

I can safely say that no one understands quantum mechanics

Richard Feynman (1918-1988)

Father of the new way to conceive quantum mechanics

What is a quantum computer?

X X

A quantum computer uses quantum properties of the **matter** to perform computation of data

Examples of used *matter*

An atom can be	not excitedexcitedboth	
The polarization of a photon can be	horizontalverticalboth	

Formally, any matter used in quantum mechanics can be in a **superposition** of 2 states

Understand the superposition

Recap

What does ; h + h mean?

Reference to Schrödinger's cat

What does $\frac{1}{\sqrt{2}}$ $\rightarrow +\frac{1}{\sqrt{2}}$ mean?

Reference to Schrödinger's cat

QC = Quantum Computer

Quantum cryptography

3151891819101010101010101010101

Goal

Exploit the mechanical properties to perform crypto tasks

Quantum Random Number Generator

Generate better high-quality random numbers

GUTOOIS

FROM VISION TO TECHNOLOGY

Based on:

- Radioactive decay
- Noise

• Quantum optics most used

Quantum Random Number Generator Single-photon splitting

Quantum Key Distribution

Transfer **Casecurely** from Alice to Bob From **A**, produce a **random shared** secret key

Quantum Key Distribution Polarization of a photon

Quantum Key Distribution Polarization of a photon

Quantum Key Distribution Eavesdropping the BB84 protocol

Quantum Key Distribution

Limitation on the distance of key exchange

Port 5. 2-2 5,0,0,0

01

a

T

OQ SAI

/0010 1-19 a 19 o

CILLUDAT

COLUMN A

DEEC

THEFTERING

WE ARE ANONYMOUS

CONTRACTOR CONTRACTOR

Quantum attacks ULE MAID

00 00

1) 1) 1) 1

10

Θ

b

ď

õ

0) 0)

Goal

Exploit the mechanical properties to crack/solve hard problems

Shor's algorithm

Created by Peter Shor (1994)

Solve prime factorization in polynomial time

Prime factors: 2, 2, 3, 7, 13

$$1092 = 2^2 * 3 * 7 * 13$$

Shor's algorithm Breaking public-key cryptography

E.g. an RSA number:

N = p * q, where (p,q) are prime numbers

Shor's algorithm Breaking public-key cryptography

E.g. an RSA number: N = p * q, where (p,q) are prime numbers

Created by Lov Grover (1996)

Solve invertion of function in sub-linear time

Searching an unstructured DB / an unsorted list

E.g. searching a phonebook where:

• x is a name • y = f(x) is a phone number

Searching an unstructured DB / an unsorted list

E.g. searching a phonebook where:

• x is a name • y = f(x) is a phone number

Searching an unstructured DB / an unsorted list

E.g. searching a phonebook where:

• x is a name • y = f(x) is a phone number

Grover's algorithm Breaking symmetric-key cryptography

Simple solution

Use looooooooooooer keys!

Goal

Cryptographic schemes/algorithms resistant to Resistant t

Hash-based crypto

EX A 128-bit security requires lengths > 256 bits

Code-based crypto

Created by Robert McEliece(1978) Alternative to **PK encryption** like RSA/ECC

Based on error-correcting code

Most well-known

- the McEliece cryptosystem
- the Niederreiter cryptosystem
- the Courtois-Finiasz-Sendrier signature scheme

Code-based crypto The principles

Lattice-based crypto

Lattices first studied by Lagrange & Gauss (18th century)

Alternative to **PK encryption** like RSA/ECC

Lattice-based crypto The most well-known schemes

Encryption

- the Peikert ring-LWE key exchange
- the Goldreich-Goldwasser-Halevi encryption scheme
- NTRUEncrypt

Signature

- the Gunesyu-Lyubashevsky-Poppleman ring-LWE scheme
- the Goldreich-Goldwasser-Halevi signature scheme
- NTRUSign

<u>Hash</u>

- SWIFFT (based on Fast Fourier Transform)
- LASH (LAttice based haSH function)

Lattice-based crypto Security assumptions

Learning With Errors (LWE)

Find x from (f, y) when y contains errors

Shortest Vector Problem (SVP)

Find the shortest vector in a lattice

[and its sub-problem]

Short Integer Solution (SIS)

Find the shortest vector in specific lattices

Post-quantum actors

U.S. Department of Commerce

World Class Standards

Michele Mosca

Co-Founder, President and CEO of evolution Co-founder of IQC Computing at WATERLOO Project leader of OPEN QUANTUM SAFE

Quantum risk assessment	Quantum safe hardware & software	
Roadmap design & implementation	Education service	

The integrator: **OPEN QUANTUM SAFE**

Prototype integrations into protocols/applications such as **OpenSSL**

Recommandations

Quantum tech is not a dream

QC = Quantum Computer

How to be quantum-resistant

Hash-based crypto

- Keys must be **used once**
- Lengths of variables and keys must be long enough (> x2) to be quantum-resistant

Code-based crypto

 Size of public key is extremely large (> 8,3 Mbits) to be quantum-resistant

Lattice-based crypto

Not mature yet

Tania Martin

2 02 787 56 05 ⊠ tania.martin@smals.be

Smals

- www.smals.be
- ✓ @Smals_ICT
- www.smalsresearch.be
 - @SmalsResearch

